
The Theory of Photon-Impact Bound-Free Pair
Production and Applications to Relativistic

Heavy-Ion Collisions

Carsten Kallesø Agger

March 11, 1996



Copyright c©Carsten Agger, 1996
The treatise may under no circumstances be resold or redistributed for compen-
sation of any kind, in either printed, electronic, or any other forms, without prior
written permission from the author.
Comments, criticism and questions will be appreciated and may be directed to
the author by email to agger@modspil.dk



Contents

1 Preface iii

1.1 Prehistory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
1.2 An Overall View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1.2.1 Summary of Part I . . . . . . . . . . . . . . . . . . . . . . . . . . iv
1.2.2 Summary of Part II . . . . . . . . . . . . . . . . . . . . . . . . . v
1.2.3 Summary of Part III . . . . . . . . . . . . . . . . . . . . . . . . . v
1.2.4 Comparison to Previous Work . . . . . . . . . . . . . . . . . . . vi

1.3 Note on Units and Terminology . . . . . . . . . . . . . . . . . . . . . . . vii
1.4 Four-vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

I Photon-Impact Pair Production: Theory 1

2 Introduction 1

3 Wave Functions and Notation 4

3.1 Dirac Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Free Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Continuum Coulomb States . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Bound Coulomb States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.5 Formal Descriptions of Pair Production in Atomic Fields . . . . . . . . . 8

3.5.1 Comparison of the Hole Picture and QED . . . . . . . . . . . . . 9
3.5.2 Including the Atomic Field . . . . . . . . . . . . . . . . . . . . . 11

4 Cross Sections 15

4.1 Total Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Differential Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Exact Calculation of Matrix Elements 18

5.1 Angular Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.1 s- and p1

2
-states . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1.2 p 3
2
-states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Radial Integrals: Initial Remarks . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Radial Integrals for the Ground State . . . . . . . . . . . . . . . . . . . 23
5.4 Radial Integrals for the L shell . . . . . . . . . . . . . . . . . . . . . . . 26

6 Previous Work on Bound-Free Transitions: A Brief History 27

6.1 The Born Approximation: Plane Waves . . . . . . . . . . . . . . . . . . 27
6.2 Simplifying the Exact Result . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3 Modified Plane Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.4 More Elaborate Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.5 Exact Coulomb Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

i



II Photon-Impact Pair Production: Results 36

7 Implementation 36

7.1 Structure of the Implementation . . . . . . . . . . . . . . . . . . . . . . 37
7.2 Testing the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8 Total Cross Sections 41

8.1 K shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.1.1 Partial Wave Cross Sections . . . . . . . . . . . . . . . . . . . . . 45

8.2 L shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9 Differential Cross Sections 57

9.1 Angular Distribution for the K shell . . . . . . . . . . . . . . . . . . . . 57
9.1.1 Polarisation Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 64

9.2 Angular Distribution for the L shell . . . . . . . . . . . . . . . . . . . . 67

III Pair Production in Relativistic Ion Collisions 74

10 The Impact Parameter Model 74

11 Calculation of Transition Probabilities 76

11.1 The Transition Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
11.2 Coupled Channel Equations . . . . . . . . . . . . . . . . . . . . . . . . . 79

12 Transition Probabilities in RHIC 80

12.1 Born Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
12.2 Coupled channel calculations . . . . . . . . . . . . . . . . . . . . . . . . 80
12.3 Magnus Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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1 Preface

1.1 Prehistory

This thesis is intended to fulfil the requirements for obtaining the cand. scient.

degree at the Institute of Physics and Astronomy (IFA) at the University of
Aarhus. It is mainly concerned with electron-positron pair production by photon
impact with capture into an atomic shell,1 and attempts to use the results thus
obtained for the calculation of cross sections for pair production with capture in
relativistic heavy-ion collisions (RHIC).

This subject was chosen since after taking graduate courses on atomic physics
and quantum field theory I wanted to keep on working with atomic physics - at
the same time I had found the course on quantum field theory both fascinating
and confusing, since there had been no time for discussing the applications of the
quite involved formalism. Thus, I found it natural looking for a subject under the
general heading of “applications of quantum electrodynamics in atomic physics”.

This led me to talking with Allan Hvidkjær Sørensen who is mainly concerned
with relativistic atomic physics, and who had just completed a project concern-
ing bound-free pair production in RHIC. He suggested I examine the somewhat
simpler process of pair production with capture by photon impact.

This process is less easily observed experimentally than, for instance, free-
free pair production or the photoelectric effect, since it requires the presence of
fully (or almost fully) stripped ions and as opposed to free pair production has
no relevance to γ-ray absorption. The reason is that this process will not be
observed by directing a beam of photons upon a solid, since the cross sections
are very strongly suppressed for the higher atomic shells, and the lower atomic
shells are always occupied in a solid; of course, the atoms in a solid are actually
normally neutral, so that bound-free pair production would be to negative ion
states. But this could hardly be a significant effect, since the strong electron
correlation usually found in the ground state of negative ions would demand a
higher-order process.

The results, however, may be used in the so-called virtual photon or Weizsäcker-
Williams(WW) method for calculating cross sections for bound-free pair produc-
tion in RHIC: previous WW-calculations had used approximate wave functions
only valid for high energies and small target charges.

Moreover, photon-impact bound-free pair production is of interest in its own
right as an electrodynamic process which can be calculated exactly. The exact
numerical calculation of cross sections of these processes is the main result of this
work, and the main part of the effort has gone into the preparation of reliable

1This process will also be referred to as bound-free pair production, since one free and one
bound particle is produced. In the literature, one may frequently find the terminology “pair
production with subsequent capture”. This is, however, entirely misleading since it implies that
a free particle is created and then captured.
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and reasonably efficient computer programs to do the calculations.
Having thus decided that this would be an interesting project of a reasonable
size, I went ahead, the result of which is the present thesis.

1.2 An Overall View

This treatise is naturally divided into three parts; in part I, we introduce the the-
ory of the process of bound-free pair and sketch the theoretical and conceptual
framework upon which we build; in part II, we present the results of calculations
based on the formulae obtained in part I, while in part III we discuss the possi-
bility of using the results of part two in RHIC.
As we will see in section 2, our subject matter is both very simple and very
complicated.

It is simple, because it is concerned with one of the very simplest electrody-
namical processes we know, the creation of an electron-positron pair; the bound-
free variety is conceptually and computationally exactly equivalent (though of
course not identical) to the well-known photoelectric effect. It is further simple,
because we are working with the extremely well-described and eminently solvable
Coulomb problem.

And it is complicated, because reliable predictions of the cross sections of this
process cannot be attained in perturbation theory - for heavy elements, both the
first and second Born approximations are totally wrong (this is also discussed in
part II, as well as by Pratt et al in their review article). If we want our results to
have any predictive value, we must account exactly for the Coulomb field of the
nucleus within the framework of relativistic quantum mechanics. This turns out
to be a both mathematically and computationally nontrivial task.

1.2.1 Summary of Part I

The presentation of theory and results is intended to be as self-contained as
possible, and for this reason I have included a quite extensive presentation of the
theoretical background.
Most of this theory is treated quite well by a number of authors - the books
by Greiner and Rose are good introductions to relativistic quantum theory, and
contain detailed derivations of the exact relativistic Coulomb waves which we
merely quote. An overview of elementary electrodynamical processes may be
found in the books by Heitler and Akhiezer & Berestetskii, as well as in H.
Olsen’s review article from 1968.

After stating and delineating the problem and the model to be used, we
proceed to present the basic formalism and wave functions. A discussion of
the derivation of the first-order transition amplitudes and cross sections and the
general description of pair production in quantum mechanics and quantum field
theory is also included.
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After this presentation, we derive and present expressions for the total and
differential cross sections for bound-free pair production in terms of partial wave
matrix elements, and in section 5 we obtain analytical expressions for these matrix
elements.

At this point, we give a brief account of the work done by other researchers in
the case of related processes, namely, the atomic photoelectric effect and single-
photon pair annihilation, and sketch a few of the various approximations which
have been applied.

1.2.2 Summary of Part II

The results of a numerical calculation based on the analytical cross sections ob-
tained in part I are presented and compared to previous work; this concludes
the main part of the thesis, the one concerned with photon-induced pair produc-
tion. We also include a description of the programs we have used to implement
the formulae, as well as a discussion of some of the dangers and possible errors
connected with numerical calculations.

1.2.3 Summary of Part III

The process of bound-free pair production in RHIC has been the target of intense
investigation in recent years, for a number of reasons. First of all, it is highly
nonperturbative: if a highly charged projectile collides with a highly charged
target, it is not enough to take exact account of the target ion and treat the
electromagnetic field of the particle as a perturbation. Secondly, the cross section
for this process increases as the collision energy increases, and at high energies,
it may limit the lifetimes of ion beams (since they cannot be controlled in an
accelerator, if their charge state is changed).
In part III, we attempt to use the total cross sections obtained in parts I and II for
estimating the cross sections of this process in the virtual photon approximation
mentioned above.
This approximation is perturbative and indeed our main conclusion is, that for
high collision energies it seems to reproduce the results previously obtained in first
order perturbation theory (Becker et al). Bound-free pair production in RHIC
has been observed experimentally by Belkacem et al, but at rather low collision
energies, so that the results obtained in the present thesis cannot be expected to
give accurate results.

Before proceeding to the treatment of the virtual photon approach, we intro-
duce the theory of atomic processes in RHIC and review three of the approxi-
mation methods which have been attempted (the Born approximation, coupled-
channel calculations with a finite basis set, and the so-called sudden collision or
first Magnus approximation.)
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1.2.4 Comparison to Previous Work

What results do we arrive at, and what is their relation to the results obtained
by previous investigators? We give a brief overview:

The total cross sections of the process of K- and L-shell bound-free pair
production have been calculated for seven values of the target charge (four for
the L-shell) for impact photon energies up to about 25 MeV (enough to deduce
the high-energy behaviour), and differential cross sections for the 1s, 2s and 2p1

2
subshells, also for a number of energies.
Programs have been developed, which calculate the total or differential cross
sections for any target charge or angle in an energy range from threshold to the
high-energy limit.

The cross sections for bound-free pair production with capture to the K shell
have previously been calculated by Aste et al for energies up to about 15 MeV, and
they obtained the same results as in the present thesis - it should be mentioned,
that when their article was published, the present work was already in progress.
The differential cross sections for single-photon pair annihilation, the inverse of
bound-free pair production, were calculated by Johnson in 1967 for a few, low
energies. Johnson et al had already calculated the total cross sections for this
process for positron energies up to 3.5 mc2 (about 1.8 MeV). The cross sections
for bound-free pair production with emission of a positron in this energy range
may be deduced directly from their results.
L-shell calculations for the atomic photoelectric effect, assuming a pure Coulomb
potential, were performed by Alling & Johnson. These calculations are equivalent
to the ones performed in the present thesis, but they were done at so low energies,
that they cannot be compared directly to our results.

On the other hand, the cross sections for bound-free pair production and
those for the photoelectric effect do become equal in the high-energy limit, and
the exact high-energy limit for the total photoelectric effect cross sections was
obtained by Pratt (1960a,b).

So, which new results do we obtain in the present work?
First of all, the calculation of the L-shell total cross sections from threshold to
the high energy limit, that is, in the region where the approximation methods fail
because of the nonperturbative character of the process at high target charges.
Secondly, we calculate the differential cross sections for the K- and two L-
subshells both near threshold, at intermediate and high energies.
The results we obtain in part III are equivalent to those already published by
Aste et al; but we argue that one must choose the minimum impact parameter
larger than commonly used in the literature; moreover, we find that the results
of the Weizsäcker-Williams approximation nearly exactly reproduce those of the
first Born approximation of time-dependent perturbation theory.
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1.3 Note on Units and Terminology

The Planck constant, the mass of the electron and the velocity of light will be
taken to unity throughout (h̄ = m = c = 1). In a few equations, they are retained
for the sake of clarity. Electromagnetic units are fixed by the relation e2 = 4πα,
where e is the elementary charge and α the fine structure constant.

Units may conveniently be introduced in terms of the electron mass m or
the Compton wave length λC = h̄

mc
. If the result of some calculations is a cross

section, as will indeed be the case, it may be given the proper dimensions by
using

λC = 386.159 · 10−15m

or (in the case of cross sections perhaps more convenient to use directly)

λ2
C = 1491.188b

In the present work, we are only concerned with bound-free pair production
on fully stripped ions. This means that we will refer to the various nuclei either
by specifying their nuclear charge (Z=1, 8,8 2, 92 etc. ), their name (hydrogen,
oxygen, lead, uranium), or their chemical symbol (H, O, Pb, U). Thus, by U we
will mean U92+, and so on.

References are given by mentioning the name of the author(s), and the year
of publication if necessary. The sources may then be localised by referring to the
alphabetical list in section 18.

A number of special functions are used: hypergeometric functions, Bessel
functions etc. These are all described in the handbook by Abramowitz & Stegun.

1.4 Four-vectors

As is natural in a relativistic treatment, four-vector notation appears in a few of
the formulae. A couple of observations:

• the metric is defined by the usual device of an imaginary fourth component
- the position vector is thus

x = (x, ix0),

and so forth (x0 = t, of course). There is then no distinction between lower
and upper indices.

• The convention of implicit summation over repeated indices is used - thus,
pµpµ is a compact notation for

p2
x + p2

y + p2
z − E2

and xp is a compact notation for

xpx + ypy + zpz − Et
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Figure 1: The basic Feynman diagram of quantum electrodynamics

Part I

Photon-Impact Pair Production:

Theory

2 Introduction

The process we wish to investigate in the present work is depicted on figure 1,
which may be regarded either as a Feynman diagram or as a graphical repre-
sentation of the process: a photon coming in from the left creates an electron-
positron-pair - or: an electron is moving upward, emits a photon and is deflected;
- or: a positron and an electron move left, collide and annihilate, thus emitting
a photon - or: . . .

The many possible interpretations of this Feynman diagram is quite well-
known, of course, as is the following fact: The probability of actually observing
the process described on figure 1 is identically zero, since it cannot conserve both
energy and momentum. In order to get nonzero probabilities we must introduce
an external field capable of absorbing the exchanged momentum, a very relevant
example being the field of an atomic nucleus. Thus, a pictorial representation
of the process would be like figure 2. In the present work we shall always be
concerned with the case where particle 1 is in a bound state, while particle 2
belongs to the (positive or negative) continuum. If we assume that this is indeed
the case, four different processes are described by figure 1:

1. electron-positron pair production with capture

2. its inverse, single-photon annihilation by a positron on an electron bound
in an atomic field.

1



Figure 2: The lowest-order Feynman diagram of pair production and related
processes

3. radiative capture of a free electron (“decay from the continuum”)

4. its inverse, the atomic photoelectric effect.

The matrix elements determining the cross sections for these processes are
related, and it may be shown (Erber 1959) that in the high energy limit their
total cross sections become identical:

σ1 = σ2 = σ3 = σ4 (1)

If the contribution from this diagram is calculated according to the usual
Feynman rules (as described e.g. by Nielsen or Akhiezer and Berestetskii) the
cross section is obtained to first order in both the photon and external fields.
Alternatively, one may exactly account for the external field by using the Feynman
rules for the diagram on figure 1, but representing the fermions by solutions to
the Dirac equation of this field2. And this is the approach which will be taken in
the present thesis.

These processes are thus characterised by the matrix element

M =
∫

d3rψ†
1(r)α · eλe

ik0·rψ2(r). (2)

A very great part of the work done this far on the processes described by fig-
ure 1 has gone into the evaluation of this matrix element with wave functions
corresponding to various approximations: nonrelativistic calculations have been
performed for the atomic photoelectric effect and pair production; relativistic
calculations have been performed using Sommerfeld-Maue wave functions (which

2This will be explained in more detail in section 3 below
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are valid for large energies and low target charges), Coulomb-Dirac wave func-
tions, and different approximations have also been applied in order to account
for screening.

In the present work we are concerned with bound-free pair production on a
fully stripped ion, and we shall always assume we are dealing with a pure Coulomb
field and use the appropriate relativistic wave functions.
The process will be treated to first order in the radiation field, and we shall thus
ignore the all radiative corrections including the Lamb shift.
We shall also neglect all recoil effects - in Appendix C, the justification of this is
discussed on the basis of some simple kinematical observations.

The perturbation result may obviously only be expected to give adequate
results when the perturbing field is indeed weak; if we are concerned with heavy
ions like U92+ this is hardly the case, and perturbation theory yields, it turns
out, too large cross sections for high energies and large Z. In the last section of
Part I, the results of the present calculations are compared with previous work,
both the various attempts at perturbation calculations and exact calculations.
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3 Wave Functions and Notation

3.1 Dirac Equation

In the framework of relativistic quantum mechanics, the electron is described by
the Dirac equation, usually given in the covariant form

(

γµ

∂

∂xµ

+m

)

ψ(x) = ieγµAµ(x)ψ(x). (3)

Here, e denotes the elementary charge, and Aµ(x) the four-vector electromagnetic
potential. The γ matrices may (in the so-called Pauli representation) be written

γ =

(

0 −iσ
iσ 0

)

, γ4 =

(

1 0
0 −1

)

, (4)

where σ as usual denotes the Pauli matrices

σx =

(

0 1
1 0

)

, σy =

(

0 i

−i 0

)

, σz =

(

1 0
0 −1

)

(5)

Alternatively, the Dirac equation may be written in the Hamiltonian form

i
∂ψ(r, t)

∂t
= HDψ(r, t), HD = α·(p − eA) + eφ+ βm (6)

where the electromagnetic potential is given by its scalar and vector components
and

α =

(

0 σ

σ 0

)

, β = γ4. (7)

Which representation to use is mainly a question of convenience: the 4-spinor
form (3) is appropriate in order to obtain relativistically invariant Green’s func-
tions or to give a general description of spin-1

2
fermions, while (6) is easier to deal

with in many applications of relativistic quantum mechanics.

3.2 Free Solutions

The stationary solutions to the Dirac equation corresponding to free spin 1
2
-

particles (Aµ(x) = 0) may be written in the following form:

ψ0(p, σ, r) = u(p, σ)ei(p·r−Et) =

√

E +m

2E

(

1
σ · p
E+m

)

χσ(p̂)ei(p·r−Et) (8)

where σ denotes the helicity of the particle in question, so that χσ(p̂) is defined
by the requirement

(σ · p)χσ(p̂) = σχσ(p̂) (9)

4



An explicit solution to (9) is

χσ=1(p̂) =

(

cos ϑ
2

sin ϑ
2
eiφ

)

, χσ=−1(p̂) =

(

sin ϑ
2

− cos ϑ
2
eiφ

)

, (10)

where ϑ and φ denote the polar and azimuthal angle of the direction p̂.
One might, of course, choose to consider polarisation in an arbitrary direction

and not just the helicity - such a description is given by Olsen. This will not be
pursued further here, since the description in terms of the helicity seems quite
adequate for our purpose.

The solutions (8) applies for both positive and negative energies - if we set
ε = |E|, the wave functions may be written so that the difference of the two kind
of solutions is appreciated:

ψ0(p, σ, r) =

√

ε±m

2ε

(

1
±σ · p

ε±m

)

χσ(p̂)ei(p·r∓εt), ε = ±E (11)

The negative energy solutions may be used to represent positrons in the Dirac

hole picture, which will be discussed in section (3.5) below.
Here, we mention that the rules for charge conjugation imply that the solutions
corresponding to an electron with energy −E, momentum p and helicity σ may
be interpreted as the wave function of a positron with energy E, momentum −p

and helicity −σ.
A consequence of this interpretation is that in matrix elements involving free

positrons, these may be described by substituting

E → −E, p → −p, σ → −σ (12)

in the free electron states.

3.3 Continuum Coulomb States

The continuum solutions of the Dirac equation corresponding to scattering states
cannot be given in closed form - the Dirac equation for the Coulomb poten-
tial does not separate in parabolic coordinates. Thus it is necessary to expand
the scattering states in angular momentum eigenstates, id est partial waves and
separate in spherical polar coordinates.

The wave function of a state with energy E characterised by the quantum
numbers J , L and M is given by (setting m = 1 in this section as well as the
following)

ψJLM (r) =

(

gκ(r)ΩJLM (ϑ, φ)
ifκ(r)ΩJL′M (ϑ, φ)

)

, (13)

ΩJLM =
∑

ms=±
1
2

< L1
2
M −ms,ms|L1

2
JM > YL,M−ms(ϑ, φ)χms,

5



κ = ∓(J + 1
2
), L′ = L± 1 for J = L± 1

2

where < . . . | . . . > is a Clebsch-Gordan coefficient, YLM a spherical harmonic and
χ denotes a Pauli spinor. For actual calculations, the explicit expressions for the
Ω’s, which are given by Greiner, are very convenient:

ΩJLM =

















































√

J+M
2J

Y
L,M−

1
2

√

J−M
2J

Y
L,M+

1
2





 , J = L+ 1
2







−
√

J−M+1
2J+2

Y
L,M−

1
2

√

J+M+1
2J+2

Y
L,M+

1
2





 , J = L− 1
2

(14)

The radial solutions are given by

g(r) = Ng(2pr)
s−1Re{eiδ(s+ iη)e−iprF (s+ 1 + iη, 2s+ 1, 2ipr)} (15)

and

f(r) = Nf (2pr)
s−1Im{eiδ(s+ iη)e−iprF (s+ 1 + iη, 2s+ 1, 2ipr)} (16)

where F (. . . , . . . , . . .) = 1F1(. . . , . . . ; . . .) as usual denotes the confluent hyper-
geometric function and the various parameters and normalisation constants are
given below:

Ng = 2

√

pSE(E + 1)

π
e

1
2
πη |Γ(s+ iη)|

Γ(2s + 1)
(17)

Nf = −NgSE

√

E − 1

E + 1

p =
√
E2 − 1, η =

αZE

p
, e2iδ =

−κ+ i η
E

s+ iη
(18)

s =
√
κ2 − α2Z2, SE =

E

|E| .

In these equations, α ∼ 1
137

is the fine structure constant, while Z denotes the
charge in units of e. αZ is thus a measure of the strength of the Coulomb
potential, and it may be noted that the wave functions given in this and the next
section give no real sense unless αZ ≤ 1; it is unphysical to assume the existence
of a point charge with Z > 137.

When doing calculations on scattering processes it is often necessary to rep-
resent the wave functions of the scattered particles not by partial waves but
by scattering states Ψ±, corresponding to incoming (outgoing) plane waves plus
outgoing (incoming) spherical waves: in the asymptotic limit r → ∞,

Ψ+
p ∼ u(p, σ) +

∑

σ′

fσσ′(p,p′)u(p′, σ′)
eipr

r
for r → ∞ (19)
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In potential scattering, the coefficients fσσ′ are related to the differential cross
section of the scattering process by

dσ

dΩ
= |fσσ′|2 (20)

In the case of the Coulomb potential it turns out to be impossible to fulfil such
boundary conditions and the asymptotic behaviour will be modified by a position-
dependent phase.

In the nonrelativistic case, such states are obtained in closed form by separat-
ing the Schrödinger equation for the Coulomb potential in parabolic coordinates
(see, for instance, Merzbacher chapter 11).
Relativistic Coulomb scattering states are only available in a partial wave expan-
sion. This is given by Rose and may be written

Ψ± = 4π

√

π

2Ep

∑

JLM

iLe±iδκ < L1
2
(M − 1

2
σ)1

2
σ|L1

2
JM > Y ∗

L,M−σ(p̂)ψJLM (21)

where ψJLM are the partial waves and δκ is the Coulomb phase shift, given by

δκ = δ + (L+ 1 − s)
π

2
− arg {Γ(s + iη)} (22)

3.4 Bound Coulomb States

These wave functions may be written in the form (13); in this case, the radial
functions turn out to be

gκ(r) = Nbr
s−1e−p0r

{(

(n′ + s)

E
− κ

)

F (−n′, 2s + 1, 2p0r) − n′F (1 − n′, 2s + 1, 2p0r)

}

(23)

fκ(r) = −
√

1 − E

1 + E
Nbr

s−1e−p0r·
{(

(n′ + s)

E
− κ

)

F (−n′, 2s + 1, 2p0r) + n′F (1 − n′, 2s+ 1, 2p0r)

}

where

Nb =
(2p0)

s+
1
2

Γ(2s + 1)

√

√

√

√

(1 +E)Γ(2s + n′ + 1)

4 (n′+s)
E

( (n′+s)
E

− κ)n′!
, (24)

p0 =
√

1 − E2, n′ = n− |κ|
while s and κ are as defined in the previous section and n denotes the main
quantum number. These expressions are very much simpler for the lowest shells
(for small n′ and κ). For the ground state wave function we may thus write

g(r) = N0r
s1s−1e−αZr, f(r) = −

√

1 − s1s

1 + s1s

g(r), (25)
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where N0 turns out to be

N0 = (2αZ)s1s+
1
2

√

1 + s1s

2Γ(2s1s+ 1)
. (26)

Similarly, the radial functions for the L shell (the only other shell with which
we are concerned in this thesis) may be written out explicitly:

• 2s:

g(r) = N2sr
s−1e−p0r

{

2E − 2p0r

2E − 1

}

, (27)

f(r) = −
√

1 −E

1 + E
N2sr

s−1e−p0r

{

(2E + 2) − 2p0r

2E − 1

}

,

N2s =
(2p0)

s+
1
2

2

√

√

√

√

(1 +E)(2E − 1)

2EΓ(2s + 1)
, E =

√

1 + s

2

• 2p1
2
:

g(r) = N2p1
2

rs−1e−p0r

{

(2E − 2) − 2p0r

2E + 1

}

, (28)

f(r) = −
√

1 −E

1 + E
N2p1

2

rs−1e−p0r

{

2E − 2p0r

2E + 1

}

N2p1
2

=
(2p0)

s+
1
2

2

√

√

√

√

(1 +E)(2E + 1)

2EΓ(2s + 1)
, E =

√

1 + s

2

• 2p3
2
:

g(r) = N2p 3
2

rs−1e−αZ
2

r, N2p 3
2

= (αZ)s+
1
2

√

1 + E

2Γ(2s + 1)
(29)

f(r) = −
√

1 − E

1 + E
g(r), E2p 3

2

=

√

4 − (αZ)2

2
= 1

2
s

3.5 Formal Descriptions of Pair Production in Atomic

Fields

The process of pair production in an atomic field may be described in two equiva-
lent ways, namely in the Dirac hole picture as the excitation of a negative-energy
electron to a positive-energy state: The electron emerges with positive energy,
and the hole in the negative-electron sea behaves like a particle of equal mass,
but positive charge (figure 3).

Though mathematically unambiguous, the hole theory has often been con-
sidered unsatisfactory from a conceptual point of view; in most presentations
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Figure 3: Pair production viewed as the excitation of a negative energy electron
(from Greiner et al).

of quantum electrodynamics electrons and positrons are described in terms of
the electron absorption (and positron emission) operator ψ and the positron ab-
sorption (and electron emission) operator ψ̄. The descriptions of particle and
antiparticle thus become completely symmetric. On the other hand, the hole
picture certainly does have its advantages. In this section we will first give a
brief discussion of the advantages and disadvantages of the two different ways of
describing pair production.
After that, we will turn to the question of how it is possible to include the inter-
action with the atomic field exactly by taking the initial and final states to be
solutions of the Dirac equation in this field.

3.5.1 Comparison of the Hole Picture and QED

In the Dirac hole picture, solutions to the Dirac equation with energy E < −mc2
are viewed as corresponding to states of negative energy which the electrons may
occupy. But does that not mean that all electrons would immediately decay into
negative energy states, leaving us with a lot of radiation and ionised matter and
no electrons at all? It does indeed, were it not so that these negative energy
states are postulated to be already occupied - so the electrons do not decay to
these levels because they cannot, according to the Pauli principle.

So these filled energy levels act like a constant “background” charge density,
which of course does not cause any observable electric field. We may imagine
having a number of positive-energy electrons and a vast, completely filled, sea of

9



Figure 4: Bound-free pair production - excitation from the negative energy con-
tinuum to the 1s-state (from Bertulani & Baur)

negative-energy electrons.
But if this is so, then a sufficiently strong interaction should be able lift one of
these electrons from the negative-energy sea to a state of positive energy. Then
we would see an electron, appearing out of nowhere, and, additionally, there
would be a hole in the negative energy sea; this hole would act exactly as if it
were a particle with the same rest mass as an electron, but oppositely charged -
a positron.

This is, of course, Dirac’s famous prediction of the existence of the positron,
and it offers a very practical view of the pair creation process, as depicted on
figure 3: pair production (which otherwise should be regarded as a process where
particle number is not conserved, and therefore, strictly speaking, outside the
scope of ordinary quantum mechanics) is simply the transition of a negative en-
ergy electron to a positive energy state, wherefore we can calculate the correct
transition probabilities in complete analogy with bremsstrahlung and the photo-
electric effect.
But the hole picture must only be regarded as a convenient way of motivating the
expressions for the transition amplitudes, since there exist, as has been stated,
a number of reasons to regard it as unsatisfactory. First of all, the complete
equivalence of the physical properties of electrons and positrons (differing only
in their charge) would lead one to want a theory in which the two particles are
treated symmetrically. Not so in the hole theory: the electrons are effectively
regarded as the “real” particles, while the positrons are “holes”, absences in a
fundamentally unobservable sea of infinitely many negative energy electrons.

10



“Why not?” might one ask. After all, the electrons are the “normal” variety,
since they are so very much more abundant under normal circumstances, so
why not have a physical description that gives them some (albeit unnecessary)
precedence?

Well, because this asymmetry, of course, represents a choice. As discussed by
Greiner et al, one might instead start with the charge conjugate Dirac equation
and describe the positron as the positive energy particle and treat the electrons
as holes in a filled sea of negative energy positrons. This possible choice between
two asymmetrical models rather accentuates than ameliorates the conceptual
inadequacy of the (w)hole picture.

Secondly, this picture applies only to fermions: The Pauli principle would not
be able to save the charged bosons contained by some theories from decaying into
the negative energy continuum, and a theory containing emission and annihilation
operators (as discussed in the previous section) must be constructed. And thus, in
order to secure a proper connection in the particle physical theories of bosons and
fermions, the Dirac hole picture becomes one of the first victims of the transition
from relativistic quantum mechanics to quantum field theory.

3.5.2 Including the Atomic Field

Normally, one derives the Feynman rules used in perturbation theory by intro-
ducing free-particle field operators - these must obey the Dirac equation for free
electrons and positrons, corresponding to Aµ(x) = 0 in (3).
Instead, we introduce field operators which obey the Dirac equation for the atomic

field, which is of the type
(

γµ

∂

∂xµ

+m+ V

)

ψ(x) = 0 (30)

These field operators must satisfy the anti-commutation relations
{

ψ(x), ψ̄(y)
}

= −iS(x− y) (31)

{ψ(x), ψ(y)} =
{

ψ̄(x), ψ̄(y)
}

= 0, ψ̄(x) = ψ†(x)γ4 (32)

Here, the function S(x) is the Green’s function satisfying the Dirac equation (30)
with the additional condition

S(x)|x0=0 = iγ4δ(x) (33)

The atomic field is represented by the potential energy term V , which is not,
in spite of appearances, necessarily to be interpreted as a scalar field; rather, it
will represent any kind of atomic field without specifying its detailed properties.
In the case of a Coulomb potential, it is of course to be regarded as a four-vector
whose space-like components are zero in the rest frame of its source.
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With these definitions, we wish to arrive at the following interpretation. If Ψ
is any state vector, the wave function

Ψ(x) =< 0|ψ(x)|Ψ > (34)

is its one-electron component in the presence of the atomic field V . In the same
way,

Φ(x) =< 0|ψ̄(x)|Ψ >

is its one-positron component in the presence of the atomic field V .
In the free-particle theory, the state vector is usually given in terms of the
momentum-space basis vectors |p, σ >.

When we include the atomic field, the state vector Ψ is most conveniently
given in a basis of stationary atomic states - in this notation, the ground state
vector of a Coulomb field is written |1s >, while the corresponding wave function
in configuration space is given by

< r|1s >= ψ1s(r) (35)

In free-particle perturbation theory, we find that, on accounting for the inter-
action of the electron and positron field with the photon field (introduced by
minimal coupling), the probability amplitude of a first-order process is given by

Sfi = −e
∫

dx < f |ψ0(x)γµA
0
µ(x)ψ̄

0(x)|i > (36)

where A0
µ is the free-photon field operator and ψ0 and ψ̄0 are the corresponding

free-particle lepton operators. If we go from the free-particle formalism to the
atomic-field formalism, we only have to replace these with the atomic field oper-
ators. The role of the photon field remains unchanged, of course, and the photon
contribution to the matrix element (36) is obtained from the relation

< 0|A0
µ(x)|k0, λ >=

eµλ(k0)√
2k0

eik0x (37)

where k0 is the photon energy-momentum four-vector and eµλ(k0) is the polari-
sation tensor.

In the case of pair production with K-shell capture, this becomes

Sfi = −e
∫

dx < E; 1s|ψ(x)γµAµ(x)ψ̄(x)|k0, λ > (38)

Introducing the definition of A0
µ(x), we find

γµA
0
µ(x)ψ̄(x)|k0, λ >= γµ

eµλ(k0)√
2k0

eik0xγ4ψ
†(x) (39)

= α · e�eik0xψ†(x)
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and the S-matrix element3 is

Sfi = − e√
2k0

∫

dxψ
†
1s(r)α · e�ψE(r)ei(k0−E1s−E)t = − 2πe√

2k0

Mδ(k0 −E1s −E)

(40)
where M is the matrix element (2).

It is interesting to note, that while the time integral in the free-particle case
leads to conservation of energy and momentum in the vertices, with the inclusion
of the atomic field only energy is conserved, and the process in figure 1 may
indeed be observed.

The probability of the transition is obtained by squaring (40), and so the cross
section is obtained by multiplying with the density of final states and dividing
by the flux of incoming particles. Or is it, now?

Actually, the δ-function which is so helpful in securing the conservation of
energy makes things a little more complicated, since the “probability” obtained
by merely squaring it does not seem very meaningful. It has to do with the fact
that when “representing the photon” by a plane wave of finite amplitude at all
times and in all space and treating the positron as a stationary state, that is,
with a constant flux of outgoing positron at all times, we do not really have to
do with a single process (which should be described by normalised waves) with
a finite probability, but rather with rates, with probabilities per unit time. This
can be remedied by assuming a normalised initial state photon described by some
superposition of different wave numbers,

|ϕk0
(k) >=

∫

d3kϕ(k)A0
µ(k)|0 >,< ϕ|ϕ >= 1, ϕk0

(k) ∼ 0 for k 6= k0

Alternatively, it may be assumed that the process is actually only observed during
a finite time span. The result is, in all cases, that of spiriting away one of the δ
functions, so that we end up with the transition rate

Γ =
4π2α

k0
|M |2δ(k0 − E1s − E) (41)

The cross section may now be obtained by dividing with the flux of incoming
particles (which in our case is c = 1), multiplying with the density of final states
and taking the integral. Assuming the final states to be given as scattering states,
we obtain

σ =
α

2πk0

∫

d3p|M |2δ(k0 − E1s − E) (42)

It should be noted that in connection with higher order processes, the pro-
cedure outlined here is not necessarily very practical, first of all because the
various propagators and other Green’s functions are very difficult to obtain, so
that there can be no question of merely introducing a set of simple Feynman

3The definition of the S-matrix is also discussed in section 11.1.
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rules for the scattering amplitudes as in the free-particle case. Moreover, some
of the expressions for the higher-order scattering amplitudes will diverge, and
a renormalisation is needed - this is to be performed in exact analogy with the
procedure in the free-particle case.
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4 Cross Sections

4.1 Total Cross Sections

The total cross section for bound-free pair production may be obtained by sum-
ming the partial cross sections for ending up in a particular state from some
complete set; usually, this set is taken to be scattering states, so that

σ = 1
2

∑

σ,λ,m

∫

dΩ
dσ(ϑ, φ)

dΩ
(43)

Alternatively, the complete set may be taken to be angular momentum eigenstates
(partial waves) so that

σ = 1
2

∑

λ

∑

JLMm

σJLM (44)

In these equations, λ, σ and m represent the helicities of the incoming photon
and outgoing positron, respectively, m the magnetic quantum number of the
bound electron and finally J ,L and M are the angular momentum quantum
numbers of the partial wave. Obviously, σ is absent from equation (44) and
J ,L,and M from equation (43). Since the Coulomb-Dirac wave functions may
only be obtained as a partial wave expansion, the second approach has been
taken in the present work; thus, the task to be performed has been to calculate
the cross section for ending in a particular angular momentum state and sum
these contributions.

The angular momentum eigenstates may be treated in analogy with bound
states, and the partial cross section is obtained by taking the density of final
states to be unity and doing the energy integral in (41). Since the process of pair
production with capture may be viewed as the excitation of an electron from the
negative energy continuum to a bound state, this cross section is equal to the
usual photoabsorption cross section given, for instance, by Bethe and Salpeter
and by Merzbacher; introducing the Compton length, it becomes

σJLM =
4π2α

k0
|M |2λ2

c (45)

where as in section 3.5.2 k0 denotes the energy of the incoming photon - the
positron will be emitted with the energy k0−Eb. M is, of course, to be understood
as a partial wave version of equation (2), that is,

M = MλJLM =
∫

d3rψ
†
b(r)α · eλe

ik0·rψJLM(r), (46)

where ψJLM is the appropriate negative continuum wave function as described
in section 3.3. It should be noted that the expression (45) for the partial wave
cross sections may also be derived from the expression for the differential cross
section; we shall actually do that in the next section.

15



4.2 Differential Cross Sections

In this case, the cross section must be calculated utilising the scattering states
(21), where as remarked in section 3.1 we must perform the substitutions (12)
and the minus sign should be chosen in (21).

The scattering state to be used is thus

Ψ−
p = 4π

√

π

2Ep

∑

JLM

iLe−iδκ < L1
2
(M + 1

2
σ)1

2
σ|L1

2
JM > Y ∗

L,M+
1
2

σ
(−p̂) (47)

The differential cross section is now obtained by use of the formula (42) which
we derived in section 3.5.2, that is,

σ =
α

2πk0

∫

d3pδ(k0 −E − Eb)|M̃ |2

where E denotes the energy of the emitted positron, Eb the bound state energy
and the M̃ has got a tilde in order to distinguish it from the partial wave matrix
elements mentioned above.

M̃ is thus the matrix element of the bound state and the scattering state,
explicitly

M̃ =
∫

d3rψ†
b(r)α · eλe

ik0·rΨ−
p

= 4π

√

π

2Ep

∑

JLM

iLe−iδκ < L1
2
(M + 1

2
σ)1

2
σ|L1

2
JM > Y ∗

L,M+
1
2
σ
(−p̂)MλJLM . (48)

Once more, MλJLM are the partial wave matrix elements already mentioned. The
next section will be dedicated to the exact calculations of these matrix elements.

We may check the consistency between the approaches for obtaining the par-
tial wave and differential cross sections by deriving (45) directly from (42). Squar-
ing and inserting in expression (42) above yields

dσ

dΩ
=
αpE

2πk0

|M̃ |2 (49)

=
αpE

2πk0

[

16π3

2Ep
|
∑

JLM

iLe−iδκ < L1
2
(M + 1

2
σ)1

2
σ|L1

2
JM > Y ∗

L,M+
1
2

σ
(−p)MλJLM |2

]

.

=
4π2α

k0
|
∑

JLM

iLe−iδκ < L1
2
(M + 1

2
σ)1

2
σ|L1

2
JM > Y ∗

L,M+
1
2
σ
(−p)MλJLM |2

In order to obtain the cross section for scattering into a particular angle it is nec-
essary to average over the photon helicities λ and sum over the positron helicities
σ. As mentioned above, we may obtain the total cross section given by (45) and
(44). To show this, we will combine equations (49) and (43) to obtain

σ = 1
2

∑

λ,σ

4π2α

k0

∫

dΩ
∑

JLM

∑

J′L′M ′

iL−L′

ei(δκ′−δκ) < L1
2
(M+ 1

2
σ)1

2
σ|L1

2
JM > × (50)
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× < L′ 1
2
J ′M ′|11

2
(M ′ + 1

2
σ)1

2
σ > Y ∗

L,M+
1
2
σ
(−p̂)Y

L′,M ′+
1
2

σ
(−p̂)MλJLMM

∗
λJ′L′M ′.

Since the total cross section cannot depend on the photon helicity, this average
is easily done (multiply by two to get the two possibilities, then divide by two to
do the average . . . ). The integration over all angles is equivalent to computing
the scalar product of two spherical harmonics and yields δLL′δMM ′. Then, as a
result of the completeness relation for the Clebsch-Gordan coefficients the sum
over σ may be carried out by replacing these coefficients by δJJ′ . The primed
summation thus becomes trivial, and all in all we have

σ =
4π2α

k0

∑

JLM

|MJLM |2,

which (as it should be) is exactly the result (45) we derived in the previous
subsection.

So having obtained the expressions for the total and differential cross sections
in terms of the partial wave matrix elements (46), the only thing we need in order
to start getting some actual results is a prescription for actually computing these
matrix elements. To this, the next section will be devoted.
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5 Exact Calculation of Matrix Elements

In this section, we wish to calculate the matrix elements between bound states
and spherical waves, the photon being represented by a plane wave, as discussed
in section 3.5.2. As we recall, this matrix element was given by (46)

M =
∫

d3rψ
†
b(r)α · eλe

ik0·rψE(r).

where the bound state is characterised by the quantum numbers j,l and m, while
the positron is represented by a negative energy solution to the Dirac equation
for the Coulomb potential as given in section 3.3, characterised by the energy E
and the quantum number J ,L and M . These matrix elements are needed for the
calculation of cross sections in the next section.

It should be noted that it is not necessary to read this section in great detail
in order to read the following sections; the calculations are given in elaborate and
perhaps even overwhelming detail. It has been found natural, however, to include
in the present thesis a detailed account of the steps that lead to the results as
well as the results themselves.

In the following calculation, let us choose the polarisation vector eλ to corre-
spond to a photon of positive helicity, that is, λ = +. Inserting equation (13) in
the expression for the matrix element then yields (κ′ = ∓(j + 1

2
))

M = i
∫

d3reik0·r[gκ′(r)fκ(r)Ω
†
jlmσ+ΩJL′M − fκ′(r)gκ(r)Ω

†
jl′mσ+ΩJLM ], (51)

where

σ+ =

(

0
√

2
0 0

)

(52)

In order to do the integral k0 is assumed to be in the direction of the z-axis,
allowing us to write k0 = k0ez and use the expansion

eik0z =
∞
∑

k=0

ik
√

4π(2k + 1)jk(k0r)Yk0(ϑ, φ), (53)

where jk as usual denotes a spherical Bessel function. Inserting this and exchang-
ing the order in which we

∫

and
∑

enables us to express the matrix element as
a sum of integrals:

M =
∞
∑

k=0

ik+1[I (k)
1 − I

(k)
2 ] (54)

where

I
(k)
1 =

√

4π(2k + 1)
∫ ∞

0
drr2jk(k0r)gjl(r)fJL′(r)

∫

dΩΩ†
jlmσ+ΩJL′MYk0 (55)

while of course

I
(k)
2 =

√

4π(2k + 1)
∫ ∞

0
drr2jk(k0r)fjl′(r)gJL(r)

∫

dΩΩ†
jl′mσ+ΩJLMYk0. (56)
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Only a finite amount of the terms in (54) do in fact contribute to the sum: the
rest vanish due to the angular selection rules: as an example, the contributions
from I1 are only nonzero if

|l− L′| ≤ k ≤ l + L′.

We may now separate the radial and angular integrals by defining

I
(k)
i = Ik

i,ϑI
(k)
i,r , i = 1, 2 (57)

The sum over k may be performed as soon as the angular integration is done.
Having done this we are left with a (finite) number of radial integrals, the calcu-
lation of which we shall subsequently address.

5.1 Angular Integrals

According to the definition in (57) above the angular integrals to be performed
are

I
(k)
1,ϑ =

√

4π(2k + 1)
∫

dΩΩ†
jlmσ+ΩJL′MYk0, (58)

I
(k)
2,ϑ =

√

4π(2k + 1)
∫

dΩΩ†
jl′mσ+ΩJLMYk0

The quantity Ω†
jlmσ+ΩJL′M depends on whether j = l± 1

2
, and whether J = L± 1

2
.

If we recall that σ+ is given by (52), insertion of the explicit expressions (14) for
the Ω’s yields

Ω†
jlmσ+ΩJL′M =

CJLM
jlm

√

(2l + 1)(2L + 1)
Y ∗

l,m−
1
2

Y
L′,M+

1
2

(59)

where the C’s arise in connection with products of Clebsch-Gordan coefficients
and are conveniently defined by

CJLM
jlm =































√

2(j +m)(J −M) j = l + 1
2
, J = L+ 1

2
√

2(j +m)(J +M + 1) j = l + 1
2
, J = L− 1

2

−
√

2(j −m+ 1)(J −M) j = l − 1
2
, J = L + 1

2

−
√

2(j −m+ 1)(J +M + 1) j = l − 1
2
, J = L − 1

2

(60)

With these relations in place we may write

I
(k)
1,ϑ =

√

√

√

√

4π(2k + 1)

(2l + 1)(2L + 1)
CJLM

jlm

∫

dΩY ∗

l,m−
1
2

Y
L′,M+

1
2
Yk0 (61)
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Now we use the formula for integrals of products of three spherical harmonics
(of this, and 3j-symbols in general, see Weissbluth, chapter 1 or Sobel’man, who
gives more special formulas for 3j-symbols)

∫

dΩY ∗
lmYLMYkµ = (−1)m

√

(2l + 1)(2L + 1)(2k + 1)

4π

(

l L k

−m M µ

)(

l L k

0 0 0

)

(62)
Consequently, we may obtain the result by writing (the result for I2 may be
obtained merely by letting l → l′,L′ → L)

I
(k)
1,ϑ = (−1)m−

1
2 (2k + 1)CJL′M

jlm

(

l L′ k

−m+ 1
2

M + 1
2

0

)(

l L′ k

0 0 0

)

(63)

From the selection rules for the Clebsch-Gordan coefficients one may note that
this matrix element vanishes identically unless

• M = m− 1

• |l− L′| ≤ k ≤ l + L′ or |l′ − L| ≤ k ≤ l′ + L

• l + L′ + k or l′ + L+ k is an even number

In the present work we are only concerned with processes in which the bound
state is an s- or p-state.

In the actual calculation, it is practical to write out explicitly the 3j-symbols
rather than calculating them (on a computer) by a more general procedure. As
an example, the matrix element for s- (and p1

2
-) states will be written down

explicitly in terms of the radial integrals of (57), while for p3
2
-states expressions

for the necessary 3j-symbols will be given.

5.1.1 s- and p1
2
-states

We begin by noting that the case of s1
2

- and p1
2

-states are completely equivalent,

since according to equation (13) the matrix elements will be completely equiv-
alent: The p1

2
-state has l = 1 and l′ = 0 as opposed to the l = 0 and l′ = 1

of the s-state - comparing with equations (54)-(57), wee see that the result for
the p1

2
-states may be obtained by merely substituting I1 for I2, L for L′ and vice

versa.
To return to the s-states, the relevant 3j-symbols for I1 turn out to be

(

0 L′ k

−m+ 1
2

m− 1
2

0

)

,

(

0 L′ k

0 0 0

)

(64)
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and, similarly, for I2
(

1 L k

−m+ 1
2

m− 1
2

0

)

,

(

1 L k

0 0 0

)

(65)

where we have used, that M = m − 1. m may of course only assume the values
±1

2
, which means that M is -1

2
or -3

2
. Thus, we need the formulae

(

j1 j2 0
−m1 m2 0

)

= (−1)j1−m2
δj1j2δm1m2√

2j1 + 1
, (66)

(

j + 1 j 1
m −m− 1 1

)

= (−1)j−m−1

√

√

√

√

(j −m)(j −m+ 1)

(2j + 3)(2j + 2)(2j + 1)

(

j + 1 j 1
m −m 0

)

= (−1)j−m−1

√

√

√

√

(j +m+ 1)(j −m+ 1)

(2j + 3)(j + 1)(2j + 1)

Insertion of these in the expression (63) gives us

I
(k)
1,ϑ(m = 1

2
) = (−1)m−

1
2CJL′M

1
2
0
1
2

δkL′ =
√

2J + 1δkL′, I
(k)
1,ϑ(m = −1

2
) = 0 (67)

I
(k)
2,ϑ(m = 1

2
) = −

√
2J + 1

L+ 1

2L+ 1
δk,L+1 −

√
2J + 1

L

2L + 1
δk,L−1, J = L± 1

2

(68)

I
(k)
2,ϑ(m = −1

2
) = −

√

(2J + 3)L(L + 1)

2L+ 1
[δk,L+1 − δk,L−1], J = L+ 1

2
(69)

= −
√

(2J − 1)L(L + 1)

2L + 1
[δk,L+1 − δk,L−1], J = L − 1

2

The summation over k may now be performed to yield (finally) the result for
the matrix elements for s-states (J = ±1

2
)

M = iL
′+1

√
2J + 1

[

IL′

1,r ∓ L− 1

2L + 1
I

(L−1)
2,r ± L

2L + 1
I

(L+1)
2,r

]

, m = +1
2

(70)

= iL
√

2J + 1 ± 2

√

L(L + 1)

2L + 1

[

I
(L+1)
2,r + I

(L−1)
2,r

]

, m = −1
2

As remarked above, the result for the p1
2
-states follow from interchanging L and

L′, I1 and I2 and, needless to say, using the appropriate radial integrals.
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5.1.2 p3
2
-states

For these states we will not write down the results that explicitly, but limit
ourselves to giving the most important information needed in order to do the
actual calculation.
For p3

2
the angular integral is found by insertion in the formula (63) above:

I
(k)
1,ϑ = (−1)m−

1
2 (2k + 1)CJL′m−1

3
2
1m

(

1 L′ k

−m+ 1
2

m− 1
2

0

)(

1 L′ k

0 0 0

)

(71)

I
(k)
2,ϑ = (−1)m−

1
2 (2k + 1)CJLm−1

3
2
2m

(

2 L k

−m+ 1
2

m− 1
2

0

)(

2 L k

0 0 0

)

(72)

This may be computed by use of the relations

(

j + 2 j 2
m −m 0

)

= (−1)j−m

[

6(j +m+ 2)(j +m+ 1)(j −m+ 2)(j −m+ 1)

(2j + 5)(2j + 4)(2j + 3)(2j + 2)(2j + 1)

]

1
2

(73)
(

j + 2 j 2
m −m− 1 1

)

= 2(−1)j−m

[

(j +m+ 2)(j −m+ 2)(j −m+ 1)(j −m)

(2j + 5)(2j + 4)(2j + 3)(2j + 2)(2j + 1)

]

1
2

(74)
(

j + 2 j 2
m −m− 2 2

)

= (−1)j−m

[

(j −m− 1)(j −m)(j −m+ 1)(j −m+ 2)

(2j + 5)(2j + 4)(2j + 3)(2j + 2)(2j + 1)

]

1
2

(75)
together with the symmetry properties of the 3j-symbols, described in Weiss-
bluth, chapter 1. The actual calculation would of course be the same as for the
s-state, only now we have four possible values of the quantum number m and
some slightly more complicated 3j-symbols.

5.2 Radial Integrals: Initial Remarks

Let us start by considering the radial integrals from (57) for any given bound
state and thus characterise the bound state quantum numbers by b. Our radial
integrals then become

I
(k)
1,r =

∫ ∞

0
drr2jk(k0r)gb(r)fκ(r) (76)

I
(k)
2,r =

∫ ∞

0
drr2jk(k0r)fb(r)gκ(r) (77)

Let us examine these closer. The radial continuum waves are as in section 3 given
by

g(r) = Ng(2pr)
s−1Re{eiδ(s+ iη)e−iprF (s+ 1 + iη, 2s+ 1, 2ipr)} (78)
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f(r) = Nf (2pr)
s−1Im{eiδ(s+ iη)e−iprF (s+ 1 + iη, 2s+ 1, 2ipr)} (79)

Now, if (78) is inserted in (56 ) and (5.2) in (55) and constant factors are taken
outside the integral, this may be written

I
(k)
1,r = Nf (2p)s−1Im

{

eiδ(s + iη)

∫

∞

0

drrs+1e−iprjk(k0r)gb(r)F (s + 1 + iη, 2s + 1, 2ipr)

}

(80)

I
(k)
2,r = Ng(2p)s−1Re

{

eiδ(s + iη)

∫

∞

0

drrs+1e−iprjk(k0r)fb(r)F (s + 1 + iη, 2s + 1, 2ipr)

}

With this result and the expression (63) for the angular integrals the matrix
elements corresponding to all bound states may be calculated. Since we are only
concerned with the cases corresponding to a bound state in the K- or L-shell,
these will be the only ones considered here; it would, as a matter of fact, be
possible to express the degenerate hypergeometric function of the bound state
wave functions by its expansion or in terms of Laguerre polynomials and thus
with the aid of the techniques presented below arrive at an analytical expression
for the matrix element of any bound state. Such an expression would, however,
be so complicated that it has been deemed unnecessary for the present purpose.

Actually, it turns out that the integrals (80) always involve sums of integrals
of the same type, since the bound state wave functions are of the type

(a polynomium) times rs−1 times (an exponential).
And therefore we will start focusing on the ground state integrals, since this will
demonstrate all nontrivial aspects of the calculations; when this is done, it will be
a relatively easy matter to write down the equivalent expressions for the L-shell.

5.3 Radial Integrals for the Ground State

As mentioned, this is the simplest case. Inserting the ground state wave function
(25) in (80) above, we obtain

I
(k)
1,r = NfN0(2p)s−1Im

{

eiδ(s + iη)

∫

∞

0

drrs+s1se−(αZ+ip)rjk(k0r)F (s + 1 + iη, 2s + 1, 2ipr)

}

,

(81)

= NfN0(2p)
sIm{eiδ(s+ iη)K(s, s1s, k, αZ, p, k0)}

and, similarly, for I2,

I
(k)
2,r = −NgN0

√

1 − s1s

1 + s1s

(2p)s−1Re
{

eiδ(s+ iη)K(s, s1s, k, αZ, p, k0)
}

. (82)

It is thus clear that calculating the radial integral for all k is equivalent to calcu-
lating the integral

K(s, sb, k, p0, p, k0) =
∫ ∞

0
drrs+sbe−(p0+ip)rjk(k0r)F (s+ 1 + iη, 2s+ 1, 2ipr) (83)
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As a matter of fact, various approaches may be taken (and have been taken)
in order to evaluate this integral. The approach to be taken here is similar to
the method of Øverbø et al and was also used by Alling & Johnson as well as
by Johnson et al. It consists of expressing the spherical Bessel function of the
integrand as a finite sum of exponentials, that is,

jk(z) =
k
∑

ι=0

(k + ι)!

ι!(k − ι)!
ik+1−ι(2z)−ι−1[(−1)k+1−ιeiz + e−iz] (84)

Inserting this expression in our K above (and taking constant factors outside the
integral), (83) reduces to

K(s, sb, k, p0, p, k0) =
k
∑

ι=0

(k + ι)!

ι!(k − ι)!
ik+1−ι(2k0)

(−ι−1)[(−1)k+1−ιĨ− + Ĩ+] (85)

where we have defined

Ĩ± =
∫ ∞

0
drrs+sb−1−ιe−(p0+i(p±k0))rF (s+ 1 + iη, 2s+ 1, 2ipr)

We will first examine Ĩ+, since it turns out to be simplest. First of all, we
introduce the integral representation of the confluent hypergeometric function
and write

F (a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0
duua−1(1 − u)b−a−1ezu (86)

But this yields

Ĩ+ =
Γ(2s + 1)

Γ(s+ 1 + iη)Γ(s− iη)

∫ 1

0
duus+iη(1−u)s−iη−1

∫ ∞

0
drrs+sb−1−ιe−(p0+i[p(1−2u)+k0]r)

(87)
Upon elementary substitutions the r integral will just yield a Γ function4

Ĩ+ =
Γ(s + sb − ι)Γ(2s + 1)

Γ(s+ 1 + iη)Γ(s− iη)

∫ 1

0
duus+iη(1−u)s−iη−1 [p0 + i [p(1 − 2u) + k0]]

ι−s−sb .

(88)
If we now rewrite the factor in the integrand involving p,p0 and k0, making use
of the simple algebraic fact

p0 + i [p(1 − 2u) + k0] = (p0 + i(p + k0))(1 − 2pu

p+ k0 − ip0
), (89)

4But one might look one more time on the integral in (87) and note that this integral is
only convergent if s + sb − ι < 0. If not, it is divergent. As a matter of fact, this condition is
not fulfilled for all the integrals appearing in the sum (85). The divergence is artificial and is
introduced by the expansion (84). This is also discussed by Øverbø and by Alling and Johnson.
The solution is to multiply the integrand by a factor rm, m being a real number chosen large
enough for the integral to exist: after that, m is set equal to zero.
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the remaining integral over u may conveniently be expressed in terms of the
integral representation of the (non-degenerate) hypergeometric function

F (a, b; c; z) = 2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
duua−1(1 − u)c−a−1(1 − zu)−b.

(90)
Upon comparison, we obviously have

Ĩ+ =
Γ(s+ sb − ι)

[p0 + i(p+ k0)]s+sb−ι
F (s+ 1 + iη, s+ sb − ι; 2s+ 1;

2p

p + k0 − ip0
) (91)

As for Ĩ−, we will first apply the Kummer transformation F (a, b, z) = ezF (b−
a, b,−z), as a consequence of which we may write

Ĩ− =
Γ(s + sb − ι)

[p0 − i(p+ k0)]s+sb−ι
F (s− iη, s+ sb − ι; 2s+ 1;

2p

p + k0 + ip0
) (92)

But now we may sum up the result of our present effort, a result which is of
considerable use in evaluating the radial integrals for all bound states:

K(s, sb, k, p0, p, k0) =
∫ ∞

0
drrs+sbe−(p0+ip)rjk(k0r)F (s+ 1 + iη, 2s+ 1, 2ipr)

=
k
∑

ι=0

(k + ι)!

ι!(k − ι)!
ik+1−ι(2k0)

(−ι−1)
[

(−1)k+1−ιĨ− + Ĩ+
]

(93)

where

Ĩ+ =
Γ(s + sb − ι)

[p0 + i(p+ k0)]s+sb−ι
F (s+ 1 + iη, s+ sb − ι; 2s + 1;

2p

p+ k0 − ip0
)

while

Ĩ− =
Γ(s+ sb − ι)

[p0 − i(p+ k0)]s+sb−ι
F (s− iη, s+ sb − ι; 2s + 1;

2p

p + k0 + ip0

).

And now the radial integrals for the ground state are simply given by (81)
and (82), where K is known from equation (93).
As in Sørensen and Belkacem we might arrive at the very same result by using,
not the integral representation for the confluent hypergeometric function but the
series expansion. This would lead to the same result, with the hypergeometric
function expressed by the Gauss series. The present approach is more general,
however, since it is immediately valid in the case | 2p

p+k0+ip0
| > 1 , where the Gauss

series fails to converge.
This makes no difference at all for the calculations considered in the present

thesis, but for calculations involving the photoelectric effect the Gauss series
would be inapplicable. Indeed, the only reason for introducing the Kummer
transformation in (92) was that this step gives the expressions a form that enables
us to use the Gauss series.
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5.4 Radial Integrals for the L shell

Here we must insert the wave functions of section 3.4 in equation (80). We get,
for the 2p3

2
state:

I
(k)
1,r = Nf (2p)

s−1Im
{

eiδ(s+ iη)
∫ ∞

0
drrs+1e−iprjk(k0r)g2p 3

2

(r)F (s+ 1 + iη, 2s+ 1, 2ipr)
}

(94)

= NfN2p 3
2

(2p)s−1Im
{

eiδ(s+ iη)K(s, sp 3
2

, k, 1
2
αZ, p, k0)

}

,

I
(k)
2,r = −

√

√

√

√

√

1 − E2p 3
2

E2p 3
2

+ 1
NgN2p 3

2

(2p)s−1Re
{

eiδ(s+ iη)K(s, sp 3
2

, k, 1
2
αZ, p, k0)

}

The integrals corresponding to the 2s and 2p1
2

states are more complicated but

very similar, as might be expected. They have the same energy, so we may write

E2 = E2s = E2p1
2

=

√

1 + s1

2
, p0 =

√

1 − s1

2
, s1 =

√
1 − α2Z2, (95)

K1 = K(s, s1, k, p0, p, k0), K2 = K(s, s1 + 1, k, p0, p, k0)

As with the 2p3
2

case we merely insert in the formulae from the preceding sections,
and get for the 2s-state:

I
(k)
1,r = NfN2s(2p)

s−1Im
{

eiδ(s+ iη)
[

2E2K1 − 2p0

2E2 − 1
K2

]}

(96)

I
(k)
2,r = −

√

1 − E2

E2 + 1
NgN2s(2p)

s−1Re
{

eiδ(s+ iη)
[

(2E2 + 2)K1 − 2p0

2E2 − 1
K2

]}

And, very similarly for 2p1
2
:

I
(k)
1,r = NfN2p1

2

(2p)s−1Im
{

eiδ(s+ iη)
[

(2E2 − 2)K1 − 2p0

2E2 + 1
K2

]}

(97)

I
(k)
2,r = −

√

1 − E2

E2 + 1
NgN2p1

2

(2p)s−1Re
{

eiδ(s+ iη)
[

2E2K1 − 2p0

2E2 + 1
K2

]}
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6 Previous Work on Bound-Free Transitions: A

Brief History

The aim of the present section is to give a brief account of previous research on
the subject, while at the same time reviewing the simplifications that arise in the
case of high energies and low target charges.
Regarding the former, we will give a history of the research done on the four
processes mentioned in section 2 - apart from the work of Aste et al, the most
interesting work was done on the photoelectric effect and single-photon annihila-
tion.

In order to limit the extent of the treatment, we will only discuss the photo-
electric effect in the relativistic regime, just as we shall only be concerned with
work using the Coulomb field for the target ion, since this is especially relevant
for the subject matter of the present thesis - in the case of photoelectric effect or
single-quantum annihilation, screening effects are important, but not for bound-
free pair production.

As for the latter aim, it is well worth noting that the exact, analytical expres-
sions for cross sections and matrix elements we obtained in the preceding sections
are not convenient for the calculation of high-energy cross sections, since more
and more terms of the partial wave expansion contribute, and each of these terms
become increasingly labourious to calculate as the angular momentum quantum
numbers increase.
On the other hand, in the limiting cases of low target charge (Z) and high photon
energy a number of approximations become valid, yielding expressions which may
be computed with considerably less effort. We will focus on four such possibili-
ties.
Extensive calculations will, on the other hand, not be attempted - rather, we
shall give an outline of how they might have been done.

6.1 The Born Approximation: Plane Waves

The quantum theoretical study of the processes described in section 2 and charac-
terised by the electromagnetic matrix element (2) may be said to have started in
1905, where Einstein published his paper on the photoelectric effect, introducing
the quantisation or corpuscular nature of light.

After the advent of quantum mechanics proper, the processes of excitation
and photoelectric effect were investigated by a number of authors. The first
fully relativistic treatment of the photoelectric effect was given by Sauter, who
obtained the K-shell cross section in the Born approximation.

Sauter was, it may be added, probably the first author to refer to the process
treated in the present thesis, since he notes that

Die Durchführung der Störungsrechnung nach den üblichen Methoden
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ergibt zwei Resonanznenner an den beiden Stellen

E = E1 + hν und E = E1 − hν

(..) Während für den hier ausschließlich behandelten Fall

hν > E0 − E1

(E0 = Ruheenergie) die erste Resonanzstelle in das Gebiet des positiv
kontinuierlichen Energiespektrums fällt und den für den Photoeffekt
maßgebenden Beitrag zur gestörten Funktion liefert, entspricht der
zweiten Resonanzstelle entweder überhaupt kein reeller Energiewert
oder, für den Fall

hν > E0 + E1

ein solcher des negativ kontinuierlichen Energiespektrums.

The existence of the positron was not experimentally confirmed at the time, and
Dirac’s theoretical prediction apparently not universally accepted 5, so he reached
the unfortunate conclusion that

Diese zweite mögliche Resonanzstelle führt zu physikalisch absurden
Resultaten und soll daher unberücksichtigt bleiben. (p. 456-57)

Sauter, as it happens, obtained his result by some quite complicated calcula-
tions, departing from the exact partial wave expansion which he then simplified,

so that he first set
√

κ2 − (αZ)2 = L+ 1 or L for L = J ± 1, respectively, in the
terms of the partial wave expansion. Afterwards, he expanded in powers of the
Sommerfeld parameter η = αZE

p
and was able to perform the sum over angular

momentum quantum numbers analytically.
His result, however, may be obtained by the simplest possible approach, that is,
representing the final state positron by a plane wave using the spinor (8) with
the substitutions (12)6.

For bound-free pair production this method was applied by Munger et al, who
used it for the calculation of cross sections for the production of anti-hydrogen
in proton-antiproton collisions in the storage ring at Fermi-lab.
This method cannot be expected to give good results if the energy is too low or
the target charge too high, since it does not include the characteristic r-dependent
phase shift characteristic for Coulomb waves.

5It must be admitted, that Dirac’s prediction of the existence of the positron was accom-
panied by an attempt to identify the proton with the positron and to find reasons that the
holes would appear to be 1836 times as massive as the electrons, which made his theory less
convincing. Indeed, Oppenheimer calculated that if this were true, all matter would annihilate
with a lifetime of 10−10s. Years later, Gell-Mann reportedly asked Dirac why he did not predict
the positron right away, and received the answer: “Pure cowardice.”

6This was, I believe, first shown by Fano et al in 1959.
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Let us outline how such a calculation might be done (similar calculations are
given by a number of authors, for instance Olsen and Akhiezer & Berestetskii).
For this purpose, it is convenient to write the ground state wave function as

ψ1s(r) =
g(r)√

4π

(

1

i
√

1−s1s

1+s1s
σ · r̂

)

χm, (98)

where, not surprisingly,

χm =























(

1
0

)

m = 1
2

(

0
1

)

m = −1
2

(99)

The cross section is readily found from formula (49) given in section 4.2. Since
the matrix element to be calculated as mentioned above is obtained from (2),

M =
∫

d3rψ
†
1s(r)α · eλe

ik0·rψE(r),

we may insert the wave functions and rewrite:

M = χ†
m

[

I+ · eλ − iσ · I− × eλ

]

χσ(−p̂), (100)

where the relation

(σ · A)(σ · B) = A · B + iσ · A × B (101)

has been used. The calculation of the matrix element is now reduced to that of
computing the integrals I± of (100). These are defined by

I± = N0

√

E −m

2E

{

p

E −m

∫

d3rrs1s−1e−αZreiq·r ±
√

1 − s1s

1 + s1s

∫

d3rrs1s−1e−αZrr̂eiq·r

}

,

(102)

r̂ =







sinϑcosφ
sinϑ sin φ

cos ϑ







where we have inserted the ground state wave function (25) and

q = k0 − p (103)

is the momentum transfer. The angular and radial parts of these integrals are
easily separated, and the resulting radial integrals are not difficult to evaluate in
the low-Z limit (and for high Z the plane wave approach is invalid).

The total Born approximation cross section for pair production with capture
to the K-shell may be obtained by performing the appropriate substitutions in
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Sauter’s result for the photoelectric effect, as discussed in section 3.2.
It reads

σB = 4πλ2
Cα(αZ)5 p

3

k5
0





4

3
+
E(E − 2)

E + 1



1 −
ln E+p

E−p

2EP







 (104)

In the extreme high-energy limit, this result reduces to the so-called Sauter cross

section

σ0 =
4πα(αZ)5

k0
λ2

C , αZ ≪ 1 ∧ k0 ≫ 1 (105)

The differential cross section for the K-shell photoelectric effect was also obtained
by Sauter, and for bound-free pair production by unpolarised photons the result
is:

dσ

dΩ
= α(αZ)5λ2

C

β3

k4
0

sin2 ϑ

(1 − β cos ϑ)3

[

E + 2 − 2

Ek0(1 − β cos ϑ)

]

, (106)

where β = p
E

is the “velocity” of the emitted positron.
In 1959, Gavrila computed the second order Born approximation for the pho-

toelectric effect. Although the result gives a somewhat better picture of the
energy dependence, it fails to reproduce the correct high energy limit for high Z
(Pratt et al).
Born approximation calculations for the L-shell photoelectric effect were also
performed by Gavrila (1961).

6.2 Simplifying the Exact Result

As mentioned, Sauter started out with the exact wave functions and subsequently

introduced some simplifications (
√

κ2 − (αZ)2 → L+1 or L and expansion in the

Sommerfeld parameter) in order to evaluate the integrals and perform the sum
over partial waves.

It might be feasible to make further attempts on getting a closed-form result
from the exact expressions. Especially, it should be possible to obtain the correct
high energy limit by making simplifications based not on the supposition that
the interaction is weak, but that the energy is high. This path was taken by Hall,
who assumed that the sum over partial waves might be replaced with an integral,
since the angular momentum quantum numbers may “almost” be treated as a
continuous variable at high energies. He reduced the photo-electric effect cross
section to a double integral which, however, could not be evaluated exactly.

Instead, he made some additional approximations and arrived at the result,
that the high-energy limit for our cross-section would be given by

σ = σ0(αZ)2ξe−2αZ cos−1 αZ, (107)

where
ξ =

√
1 − α2Z2 − 1
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is the negative binding energy of the 1s-electron.
This formula is quoted by some authors and said to yield good agreement with
exact calculations (for instance by Heitler), so a warning may be appropriate
here: Hall’s formula (107) is not a good approximation for high Z: actually, the
approximations which led to the result were wrong, as discussed by Erber and by
Pratt (1960a).
In order to be consistent, Hall’s formula should be modified by a factor of 1− 4παZ

15
,

so that the correct version of (107) reads

σ = σ0(αZ)2ξe−2αZ cos−1 αZ(1 − 4παZ

15
) (108)

A similar approach was taken by Erber. These attempts to derive a useful
analytical high-energy limit have largely failed, because the angular momentum
integrals simply become too complicated to evaluate analytically. The problem
is, of course, that on taking the limit in equation (44),

∑

JLM

σJLM →
∫

dLσL, σL =
∑

JM

σJLM (109)

the L integral involves integrating over the arguments of Γ functions and the
parameters of hypergeometric functions. Erber succeeded in making a derivation
that justified the use of the Sommerfeld-Maue wave functions (to be described
below) for high-energy calculations, but his results were no better than what can
be obtained from (108) (Pratt 1960a).

6.3 Modified Plane Waves

Instead of discarding altogether the plane waves from the Born approximation
calculation, one might try to include the phase modulation characteristic of the
Coulomb field, thus obtaining modified plane waves, so that in the spinor repre-
senting the positron we let

e−ip·r → e−ip·r−iαZ ln(pr−p·r) (110)

These waves may be obtained from the Dirac equation, written in the form
(6), without the vector potential. For stationary solutions it may thus be written

(E + iα · ∇ − V (r) − βm)ψ = 0 (111)

where V(r) is the potential energy, V = ±eφ for a positively (negatively) charged
fermion. If we now multiply (111) by the operator

E − V + βm− iα · ∇
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we can utilise the anti-commutation relations for the γ matrices and finally obtain
the second order equation (p2 = E2 −m2)

(

∇2 + p2 − 2EV + V 2 + iα · ∇V
)

ψ = 0 (112)

Since ψ is expected to behave asymptotically as a plane wave, we can make
the Ansatz

ψ = eip·rFu (113)

where u is the free-particle spinor occuring in (8). F, on the other hand, must
then satisfy the differential equation

(

2ip · ∇ + ∇2 − 2EV + V 2 + iα · ∇V
)

F = 0 (114)

For extremely large energies we may neglect the terms containing α · ∇V , V 2

and ∇2, and the equation for F is then

(ip · ∇ − EV )F = 0 (115)

The solutions of this equation for incoming (outgoing) plane waves may be written
for positrons

F = eiη±, η± = ±αZ ln(pr ∓ p · r) (116)

For electrons, the sign of the charge must of course be reversed. This is the
approach of Pratt (1960a,b) who used it to obtain the high energy limit for the
photoelectric effect cross section. The results of Pratt will be seen to be in quite
good (if not exact) agreement with the numerical results based upon the exact
formulae obtained in the present thesis.

And the interesting point is that since the modified plane wave represents
the exact high energy limit of the Sommerfeld-Maue wave function which in turn
is the exact high energy limit of the Coulomb-Dirac scattering states (21), it
should yield the exact Z-dependence in the high energy limit; the drawback is
that while the “pure” plane waves lead to matrix elements which are simple
Fourier transforms, the modified plane waves give rise to some quite complicated
integrals.

Pratt was thus only able to assume that his calculations would give the Sauter
result in the low-Z limit since he was not able to perform his calculations for αZ
lower than 0.1.
The results of Pratt, originally intended to estimate the high-energy limit of
the atomic photoelectric effect, were also used for the process of bound-free pair
production by Milstein and Strakhovenko, who used them in their estimate of
the total (that is, including all bound states) cross section for this process in the
high-energy limit.
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6.4 More Elaborate Waves

A third possibility is to use a more detailed approximate wave function, such as
the Sommerfeld-Maue wave function. This method was used by Bethe & Max-
imon for calculating pair production and bremsstrahlung cross sections, and in
their book, Akhiezer & Berestetskii demonstrate how they may be used for deriv-
ing Sauter’s Born approximation (as discussed in section 6.1) for the photoelectric
effect.7

Although we will not use such wave functions in the present work, they are
very much used in the literature, so a short discussion of them will be included.
The point of departure is once again the stationary Dirac equation in the form
(112). Using once more the Ansatz (113), for high energies we may again neglect
the terms occurring in equation (114) containing V 2 and ∇V , which leaves us
with the equation (see also the discussion in Pratt et al or Bethe and Maximon)

[

2ip · ∇ + ∇2 − 2EV
]

F = 0 (117)

The solutions to this equation corresponding to incoming (outgoing) plane waves
read

Ψ±
SM (r) = Γ(1 ± iη)e

1
2
πηeip·r

[

1 − i

2E
α · ∇

]

F (∓iη, 1; −i(p · r ∓ pr))u (118)

The advantage of using such wave functions lies in tractability, in the fact
that it is not necessary to perform the partial wave expansion.

Under which conditions are these wave functions valid? The answer lies in
the fact, that they may also be obtained from the partial wave expansion in (21)
by putting s = |κ| and performing the sum, that is, one assumes that

α2Z2

|κ| ≪ 1 (119)

in the partial waves that contribute to the scattering state (Pratt et al, Olsen).
This means that the approximation should be used with caution in the case of
high target charge even at moderate to high energies (Olsen). In order to obtain
the high energy limit for arbitrary charges these wave functions, therefore, seem
to have no specific advantage over the modified plane waves discussed in the
previous section.

6.5 Exact Coulomb Waves

Exact Coulomb waves was first used for computing the cross sections of the
electrodynamical processes described by the Feynman diagram in figure 1 by a

7A calculation that was first done by the originators of these wave functions, Sommerfeld
and Maue (Olsen).
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group in England in the mid-thirties. Because of the intractability of the required
partial wave expansion and the absence of modern computing facilities, these
calculations were only made for a few selected energies and target charges.
Thus, the numerical results were reported for the process of single-photon pair
annihilation (Jaeger & Hulme 1936a), for the photoelectric effect (Hulme et al),
free-free pair production (Jaeger & Hulme 1936b) and a number of other processes.
The analytical method applied by them was similar to the one used in the present
thesis - they evaluated the partial wave matrix elements with the aid of the partial
wave expansion (53) of the incoming photon, and expressed the radial integrals
in terms of hypergeometric functions.

The photoelectric effect was later studied by Hultberg et al who, again, took
essentially the same steps as taken by us in section 5 - these authors concentrated
on the K-shell cross sections. They evaluated the integral (83) by expressing the
spherical Bessel function in terms of the confluent hypergeometric function - the
resulting integral of an exponential, a power and two confluent hypergeometric
leads to Appell functions, hypergeometric functions of two arguments. This pro-
cedure avoids the finite sum expansion (84) of the Bessel function, but the Appell
functions converge very slowly, so the method applied in the present work seems
easier.

In 1965, Alling & Johnson made exact calculations of the photoelectric effect
cross sections for the K and L-shells for photon energies up to 1.3 MeV.
These authors, again, divide the matrix elements in radial and angular parts and
evaluate the former in exactly the same fashion that we have followed in section
5. Their approach to the angular integrals was somewhat different, however, so
that their expressions for the differential and total cross sections are rather more
complicated than (but, of course, equivalent to) those derived in section 4.

The same year, Johnson, Buss and Carroll carried out calculations of the cross
sections of single-photon pair annihilation of K-shell electrons for energies up to
3.5 electron masses.
Like Alling & Johnson, they computed the radial integrals in the same way as
described in subsection 5.3. They also derived a formula for the K-shell cross
section, expressed in terms of the radial integrals.
In 1967, Johnson reported calculations of theK-shell differential cross sections for
the same process. This time, he chose to evaluate the radial integrals numerically;
the radial continuum functions were computed by means of a predictor-corrector
routine.
Differential and total cross sections for single-photon pair annihilation for the
L-shell were studied by Sheth & Swamy, who reported calculations for the 2s-
subshell.
The calculations for single-photon annihilation are of some interest for us, since
they may be compared directly with those for bound-free pair production, the
only difference being a factor of p2

k2
0

(as also argued by Olsen).
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Exact numerical calculations for free-free pair production were reported by
Øverbø et al in 1968, and is described in more detail in Øverbø’s treatise. The
numerical technique applied by these authors was quite similar to the approach
of the present thesis, with the difference that they were concerned with two con-
tinuum wave functions, and after introducing the expansion (84) of the spherical
Bessel function, the radial integrals still contain the product of two hypergeo-
metric functions - these integrals thus lead to the very slowly converging Apple
functions, and so the exact numerical cross section for free-free pair production
is only available up to energies of about 6 MeV (Sud & Soto Vargas).

The cross sections for bound-free pair production with capture to the K shell
was examined by Aste et al in 1994.
For their computations, they used the formula given by Johnson et al; the ra-
dial integrals were calculated using the power series representation of the radial
continuum wave functions (Rose).

35



Part II

Photon-Impact Pair Production:

Results

The cross sections discussed in part I have been calculated numerically; the total
K-shell cross sections have been computed for seven values of Z (1,8,26,55,79,82,92)
chosen for their experimental relevance (Pb,Au,U) or applicability for comparison
with perturbation theory (H,O), those of the L shell for four (1,79,82,92).
The differential cross sections have also been computed for a variety of energies
and target charges, as described below.

The calculations have been performed for photon energies ranging from ∼ 2
to 50 mc2, with an expected relative accuracy of 10−5. After a short discussion
of the implementation of the various formulae and the problems this entails, the
results will be presented and compared to previous results.

7 Implementation

For the construction of the programs to take care of the numerical calculations
the c programming language was chosen.

The implementation of the seemingly beautiful formulae for the cross sections
and matrix elements poses several nontrivial problems. First of all, the expres-
sion (93) for the crucial matrix element integral requires the implementation of
the Γ function for arbitrary complex arguments8. Secondly, the hypergeometric
function is in general quite difficult to calculate. In our case, we may luckily
(and, it turns out, most efficiently) always use the Gauss series.

F (a, b; c; z) =
∞
∑

n=0

(a)n(b)n

(c)n

xn

n!
(120)

where as usual

(a)n = a · (a+ 1) · . . . · (a+ n− 1), (a)0 = 1 (121)

It is, however, in no way at all clear that a straightforward summation of the
series occurring in (93) would be numerically stable. Indeed, an example (de-
scribed in Appendix A) has been found where this series for fixed values of all
parameters except k (the parameter of the spherical Bessel function, which de-
termines the number of terms to be computed in the expression (93)) contains
terms, whose magnitude increase exponentially with k, while the result decreases

8Barring 0 and negative integers, of course !
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exponentially. This is obviously the same as asking for trouble. For this reason,
an alternative approach has been performed, described in Appendix A, which was
numerically stable for this specific example. On applying this alternative (but
not very efficient) calculation procedure to the cross sections, the results agreed
within the expected accuracy of the new procedure for evaluating the integrals,
that is, the procedure we have actually used was acquitted of being unstable for
the cross section calculations.

7.1 Structure of the Implementation

Logically, the programs consist of several parts, which therefore are spread on
a similar number of files, which will be described forthwith. For readers unfa-
miliar with the c programming language, I should mention that the files whose
names end in “.h” are “specification modules” containing only the headers of the
functions implemented in the corresponding “.c”-file. The idea is, that the .h-file
may be included by other programs which must then be linked with the compiled
version of the corresponding .c-file.

• The files compl.h and compl.c are an implementation of complex numbers,
putting a number of simple operations and functions at the disposal of the
programmer, which permits the formulae derived in the previous sections
to be written almost exactly as they stand.

• The files functions.h and functions.c contain various necessary mathemati-
cal functions, including the confluent hypergeometric function, the hyperge-
ometric function, the gamma function, and the like. They use the complex
numbers mentioned above.

• The file K.c. This contains the (quite straightforward) implementation of
the crucial integral (83). It also contains two function K1 and K2 which
are similar to K, but may be used to avoid repeated computation of the
integral with the same parameters. Each of them uses a 325 × 325 array
to store the previous results. This data structure must always be initialised

when changing to a new energy or charge. Uses the compl and functions

files.

• The files pairs.h and pairs.c contain functions for computing the pair pro-
duction matrix elements (51) and the radial integrals (76) and (77) and the
total cross section (44). The program will include up to L = 320 in the
expansion (44), which permits an relative accuracy of 10−6 up to impact
photon energies of about 25 MeV. These files use K.c, and also the compl

and func files.

• The file K-cross.c contains a main program which prompts the user for an
atomic number and a file name, and then lists the cross section on the file
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specified, in the format
(Positron energy) (Cross section) (estimated error)
where the estimated error is equal to the last term added to the cross
section, divided by the cross section itself. The main program (of course)
uses all the files mentioned above.

• The file diff.c, which computes the angular distribution for the K-shell at
a specified target charge and positron energy from the expression (49) for
the differential cross section.

Similar files exist, of course, for the L-shell.
The programs are not heavily commented, but clearly written. The pair pro-

duction files are written using a notation as close as possible to the one used in
the present work.
The programs used to compute the K-shell total cross sections may, as an exam-
ple, be found in Appendix B. An electronic version is available upon request.

7.2 Testing the Program

The implementation of the formulae were submitted to a number of tests, which
will be described in the following. First of all, a few general remarks:
When testing a program, it is important to remember that tests may only prove
the program to be wrong; this is because most interesting programs have infinitely

many possible inputs, and it is only possible to actually test them on a finite
subset.
Obviously, the demonstration that the program in question returns the correct
result on one particular input does not allow one to conclude that it is correct
for all inputs.

In principle, this may be remedied by defining a formal semantics for the
programming language in question and then perform a mathematical proof that
the program will yield the correct output on all possible inputs. Although there
has been some interest in applying such techniques to real-sized programs, this
is normally considered infeasible. 9

As regards scientific computing, the situation is even worse, since we might
construct a proof that a program is correct assuming we had the real numbers
at our disposal. But since what we do have is only finite-precision floating point
numbers, a program may be “mathematically” perfectly correct, and yet fail
disastrously when applied to an actual problem (an example has already been
mentioned). So a mathematical proof of the correctness of a numerical algorithm

9Especially, there has been some interest in applying automatic program verification in the
realm of micro-chip construction, thus providing each chip with a machine-computed proof of
its correctness - within limits, as many problems of that kind are undecidable. But use of these
techniques might have spared a certain major micro-chip producer a serious embarrassment.
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would not consist in proving that the steps performed by the computer would,
idealised, give the correct result, but that the result will not deviate too much
from the floating point representation of the “real” result.
So if testing is no use and mathematical proof out of reach, what does one do?
Well, one tests the program, and tries to do it systematically. A systematic test
program has three objectives:

• Internal test. The program is given a specific input, designed so that all
branches are taken and all program lines executed, with the desired result.

• External test. The program is given a variety of different inputs with dif-
ferent parameters, designed to correspond to the various different kinds of
input that actually occur, with particular emphasis on especially difficult
cases. In the case of scientific computing, this may also produce variations
in the results valuable for the assessment of the numerical accuracy of the
result.

• Special cases. Cases like zeroing one or more parameter, inputs that give
trivial or easily-controlled results, or ought to produce errors like dividing
by zero and the like.

These criteria have been met - a careful test of the complex arithmetic routines
and special functions (logarithm, exponentials, etc. ) implemented in compl.c has
been performed.
The hypergeometric function has both been implemented as the Gauss series, and
as the analytical continuation of the Gauss series, calculated by direct integration
in the complex plane (as described by Press et al). These functions have been
tested both by comparison of the results obtained by the two methods, and by
comparing to a number of formulae (found in Abramowitz & Stegun) for special
values of the parameters.

In the calculations we have performed for the present work, the Gauss series
turns out to be faster and more accurate - for the calculations described in Ap-
pendix A, however, the analytical continuation was necessary. For the testing
of the above functions, the condition that all branches be taken (internal test)
followed automatically from the external testing.

The other special functions which we have needed, the Legendre polynomi-
als, Γ function and Bessel functions have all been implemented according to the
prescription given by Press et al, and tested according to the prescriptions given
above.

As a check of the accuracy of the program used for computing total cross
sections for the K-shell, we can also compare directly with the data published by
Aste et al and the tables given for low energies by Johnson et al.

Johnson et al computed the cross sections up to E = 3.5 (where E denotes the
positron energy) for single-photon pair annihilation. By limiting the maximum
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number of partial cross sections, the program used for the present calculations
reproduce their data exactly to four digits (out of four) below E = 1.5, and to
three above. The reason for the last small discrepancy may be that while Johnson
et al effectively perform the partial wave expansion over the total angular mo-
mentum quantum number J , we perform the summation over the orbital angular
momentum quantum number L.

Figure 5, presented below, also shows total agreement with the curve pub-
lished by Aste et al.

Agreement with previously published results is of course no proof of correct-
ness, but it surely helps, especially since the results in the three cases are obtained
by rather different means, as described in section 6.5.
Another check of the program is the behaviour of the cross sections for very low
Z, where the Born approximation result is available. The agreement between the
Born approximation and the results for Z = 1 is striking, as seen on figure 6.
The same thing is seen on figures 30-32, where the differential cross sections for
Z=1 are compared with the Born approximation; once again, the agreement is
excellent.

The programs for calculating differential cross sections were also checked by
integrating the results numerically over all angles - in this way, we were able
to recuperate the first 4 digits of the total cross section (the last discrepancy is
probably introduced by the numerical integration).

After these optimistic conclusions, two inconveniences in the existing pro-
grams should be mentioned:

First of all, a glance at equation (93) reveals that as the energy increases, the
arguments 2p

p+k0±ip0
of the hypergeometric function will approach its singularity at

z = 1 - at the same time, the number of partial waves needed for the computation
also increases with the energy. This means, that while the low energy cross
sections can be computed in seconds or minutes, at high energies the calculations
become very labourious indeed. Furthermore, it has been found that the program
will not work if one attempts to take the summation over partial waves higher
than L = 325, and this means that at energies above 50-60 electron masses, an
estimate of the remainder should be performed.

Secondly, the differential cross section curves display discontinuities or “glitches”
at certain angles - see, for instance, figure 33 below. This phenomenon seems to
imply that the implementation of the sum in (49), which involves successive can-
cellation of terms with different phase, fails to converge at these angles.
The ability of our program to reproduce the Born approximation as well as the
correct total cross sections leads to the conclusion, however, that these problems
are limited to the angles for which the glitches appear, so the curves displayed
below may be considered accurate except in the “glitch points.”
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8 Total Cross Sections

The results of the calculations of the total cross sections for pair production with
capture to the K- and L-shells are presented in this section.
It has been decided not to include tables, in the understanding that programs
producing such tables are available on request, and because the graphical presen-
tation gives a much better presentation of the data and a much better impression
of the asymptotics and particular traits of the spectra.

8.1 K shell

The total cross sections for bound-free pair production with capture to the ground
state were computed, as stated above, for the seven elements we choose as our
examples. We would expect these cross sections to increase rapidly for low ener-
gies, reach a maximum close to zero and afterwards decrease, asymptotically as
E−1, as discussed in Section 6.

Figure 5: Total cross sections for bound-free pair production with capture to the
1s state for U (full curve), Pb (dotted) and Au (dashed).

In figure 5, we show the cross sections for uranium, lead and gold as a function
of the photon energy. We note the rather sharp peak, after which the cross section
starts falling off, displaying the the asymptotic E−1 behaviour.

The exact, numerical results must of course be expected to agree with those
of the Born approximation (104) if αZ ≪ 1.
In figure 6, this is illustrated for hydrogen - the two curves are seen to be in
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very good agreement, and the Born approximation is very nearly equal to the
exact result. In figure 7 we show the cross sections of our seven example atomic

Figure 6: K-shell cross section for hydrogen, compared to the Born approximation
(104) (dotted curve).

numbers, scaled by Z5. Even though the curves corresponding to different target
charges actually do cross, apparently because the cross sections tend to become
more “peaked” at higher charges, their high energy limit is seen to decrease
steadily with increasing Z. This is further illustrated in figure 8, which shows
the same cross sections, this time in units of the Sauter cross section (105).
We see that at high energies these curves become straight, horizontal lines, so
that, following Pratt and Milstein & Strakhovenko, we can give the cross section
at high energies as

σK = σ0f(Z), k0 → ∞ (122)

where f(Z) is a decreasing function of Z, and σ0 is the Sauter cross section.
We note that at k0 = 50 (that is, of course, about 25 MeV) the high energy

limit is nearly reached.
Now, since the Sauter cross section is the asymptotic limit of the Born ap-

proximation, and since the exact K-shell cross section is, therefore, asymptotically

equal to the Born approximation times a slowly decreasing function of Z, it might
be feasible to make a “modified Born approximation” (MBA) by assuming that

σ ∼ σMB = f(Z)σB (123)
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Figure 7: Total cross sections for our seven example elements, scaled by Z5. The
full line on top is H, then follows O (dotted), Fe (dashed), etc.

Figure 8: Total cross sections for our seven example elements in units of the
Sauter cross section. The uppermost full line is H, then follow O (dotted), Fe
(dashed), Cs (chained), Au (chained with three dots), Pb (dashed) and U (full).
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Figure 9: Total cross sections for U, Pb and Au compared to the modified Born
approximation (123).

where f(Z) is the function mentioned above.
In figure 9, we show the resulting MBA; we see that while the exact cross sections

are more peaked at low energies, the MBA is nearly exactly valid for k0 ≥ 20.
The modification factors f(Z) have been obtained by extrapolation of the

high-energy region of the present calculations; Aste et al suggest as f(Z) the, as
they say, “purely heuristic” factor

f(Z) = (1
2

+
αZ

4
)2παZ (124)

Even though our results, as has been mentioned, are in good agreement with
those of Aste et al, this formula turns out to be somewhat below the mark (5-10
%).
The reason for this discrepancy may be that Aste et al may not have taken their
calculations to sufficiently high energies or have not included sufficiently many
partial waves. Or, perhaps more likely, they have preferred to have a compact (if
not quite exact) formula for estimating the cross sections at high energies, and
so chose to sacrifice some accuracy. The results of Pratt (1960a) are in better
agreement with the present calculations.
Another useful approximation formula is the modified Hall formula mentioned
above, equation (108). Once more, it should be emphasised that the unmodified
Hall formula (107) quoted by some authors is not a good approximation to the
high-energy behaviour.
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Z Present calc. Pratt (124) (108)

92 0.196 0.203 0.182 0.175
82 0.216 0.223 0.197 0.201
79 0.222 0.228∗ 0.203 0.209
55 0.293 0.310∗ 0.271 0.305
26 0.518 0.532∗ 0.4875 0.529
8 0.798 0.793∗ 0.784 0.805
1 0.971 - 0.969 0.972

Table 1: Table comparing the high energy limits of σ
σ0

for the K shell extrapolated
from the present work with the work of Pratt,the high-energy approximation
(124) obtained by Aste et al and the modified Hall formula (108). The numbers
marked with an asterisk are extrapolated from the data given in Pratt et al.

The various high energy limits are compared in table 1. The formulae (124)
and (108) are seen to be of nearly the same quality. The discrepancies between
our high-energy limits and those given by Pratt et al may either be caused by
numerical or analytical inaccuracies in the original calculations of Pratt (1960a) -
as mentioned in section 6, a lot has happened in the realm of electronic computers
since 1960, and an attempt to repeat the computation of the exact high-energy
limit might not be superfluous, especially since the method used by Pratt did not
permit him to perform the calculations in the low-Z limit.
On the other hand, it might be possible that the present calculations have not
been taken to sufficiently high energies, so that the results do not permit the
extraction of the correct high energy limit. This appears, however, to be improb-
able considering the striking agreement between the present results and those of
the MBA for energies above 20 electron masses.

On figure 10, we compare the cross sections for the process of pair production
with capture to the 1s-state with the cross section for the creation of a positron
and a free electron near threshold.
We see that near threshold the cross section for bound-free pair production actu-
ally exceeds that of the creation of a free pair; the latter does not decrease with
increasing energy, and away from threshold the former is completely insignificant
by comparison.

8.1.1 Partial Wave Cross Sections

The total cross sections are, as we know, sums of partial cross sections corre-
sponding to different angular momentum quantum numbers.
In figures 11-13 we display the distribution of the partial cross sections of the
total angular momentum quantum number J for three different energies. We see
that for increasing energy, the number of partial waves that contribute to the
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Figure 10: Total cross section for K-shell bound-free (full curve) and free-free
(dotted curve, data from Øverbø) near threshold.

Figure 11: In this figure we display the distribution of the partial cross sections
for Z = 82 on the total angular momentum quantum number J of the emitted
positron, for the positron energy E = 1.5.
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Figure 12: As in figure 11, only E = 5 - in this figure, the dotted curve corresponds
to the cross section for the final state electron to have m = −1

2
, if the photon has

helicity λ = +1.

Figure 13: As in figure 11, but this time with E = 25. Note the characteristic
structure with a peak at low J and a “hill” at higher J .
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Figure 14: Here, for comparison, the same distribution as in figure 13 for the case
Z = 1. Note the diminished “hill” at higher J .

sum gets higher and higher - on figure 13 we show the contributions for J ≤ 100,
but actually it is necessary to include the contributions up to J = 202.5 in order
to get a sufficiently accurate result.
The distributions are drawn as histograms; for higher energies they might also
have been drawn as continuous curves, but the histograms are retained in order
to emphasise the discrete nature of the angular momentum. These distributions
are, of course, what we will expect to see experimentally if, upon detection, the
total angular momentum and not the cross section in a particular solid angle
interval is measured.
A very conspicuous feature of the distribution of the cross section on the angular
momentum quantum numbers at high energies is (as seen on figures 12 and 13)
the sharp peak at low J , followed by a decrease and a new increase at higher J ,
rather resembling a hill or a mountain.
The peak at low J is the contribution from the radial integral I1 containing the
large components of the wave functions, whereas the “mountain” stems from the
integral I2 containing the small components.
This may be appreciated if we look at figure 12, where the dashed curve displays
the partial cross sections for going (supposing the incoming photon is polarised
with helicity λ = +1

2
) to the substate where the ground state electron has pro-

jection quantum number m = −1
2

and recall that only the small components
contribute to that matrix element (cf. equation (70). It may also be seen by com-
paring figures 13 and 14, which shows the same distribution for the same energy,

48



but this time for hydrogen. In the low-Z limit the contribution from I2 tends to
vanish, and the “mountain” is, indeed, very much diminished.

It should be noted, however, that even though the small components of the
wave functions tend to vanish for αZ → 0, the high-energy behaviour will be
determined by the contributions from the small components, because the impor-
tance of the peak at low Z will tend to vanish, since the hill caused by the small
components cover a much broader range of angular momenta (Erber).

8.2 L shell

As we know, the cross sections for the L shell are expected to be smaller than
the K-shell cross sections. As was also proved by Pratt (1960b), to first order in
αZ the ns-shell cross sections obey a scaling law, so that

σns =
1

n3
σK (125)

In agreement with this result, Gavrila’s second order Born approximation for the
2s-state yielded identically 1

8
of his second-order K-shell cross section (Gavrila

1961).
As a consequence of this, the 2s1

2

cross section must of course be expected to

be 1
8

of the K-shell cross section at low target charges. The calculations of Pratt
showed that in the high energy limit, this scaling property continues to be very
close to the exact result at all target charges.

The 2p-states, on the other hand, have quite insignificant cross sections at
low target charges while at high target charges they will be of the same order of
magnitude as the 2s-cross sections (though they will still be smaller). The result
is that the cross section for bound-free pair production with capture to the L
shell is approximately 12.5% of the K-shell cross section for low target charges,
where the Born approximation is valid, and about 20 % for high target charges
(see also figure 26 below). As we shall see, the present calculations show that
this prediction, which was originally based on Pratt’s high-energy calculations,
is valid at practically all energies away from threshold.

The reason for this is that the p-cross sections increase more rapidly with Z;
in the Born approximation, that is, to lowest order in αZ, they are expected
to increase as Z7 (versus Z5 for s-states, Gavrila 1961). Comparing figures 15
and 16, we see that for these examples, the contributions from the 2p1

2
-states are

about half those of the 2s-states. On figure 17, we show the 2p3
2
-cross sections

for the same three elements.
In figure 20, the three sub-shells are displayed in the case of uranium - we

may compare with figure 21 and 22, where the same thing is done for lead and
gold, and note the increased importance of the p-states at higher Z. In the case
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Figure 15: Cross sections for pair production with capture to the 2s1
2

shell for U

(full curve), Pb (dotted) and Au (dashed).

Figure 16: Cross sections for pair production with capture to the 2p1
2

shell for U

(full curve), Pb (dotted) and Au (dashed).

50



Figure 17: Cross sections for pair production with capture to the 2p3
2

shell for U

(full curve), Pb (dotted) and Au (dashed).

of hydrogen, there would be no point in making a similar figure, since the p-states
would not show at all.

Instead, on figure 18 we show the cross section for H with capture to the
2p1

2
-state compared with Gavrila’s (1961) Born approximation. As in figure 6,

we note a striking agreement between the Born approximation and the present
calculations.

Figure 19 is similar, here we display the cross section for Z = 1 and with
capture to the 2p3

2
-shell. Here, the agreement with the Born approximation is

somewhat less striking, but nevertheless still good.
The 2s-curves are seen to be very similar to the 1s-curves, and indeed we find

that σ2s

σK
is very close to 1

8
for all energies and target charges.

This is further illustrated by figure 23, where we display the ratios of the different
L-shell cross sections to the K-shell cross section for U, and on figures 24 and 25
we do the same for Pb and Au. We do not do it for hydrogen, since the curves
for the p-states would be to small to show.
It is interesting to see that away from threshold, these ratios are very nearly
independent of the energy even at relatively low energies.

This is further illustrated on figure 26, where we compare the ratio σL

σK
for

our four example elements. We note that even at quite low energies it appears
to be constant, so that the high-energy limit of the L-shell cross sections may be
predicted from knowledge of the high-energy limit of the K-shell cross sections.
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Figure 18: Cross section for H with capture to the 2p1
2

shell, compared to the

Born approximation (dotted curve taken from Gavrila 1961).

Figure 19: As in figure 18, but with capture to the 2p3
2
-shell.
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Figure 20: Cross sections for pair production with capture to the 2s1
2

(full curve),

2p1
2

(dotted) and 2p3
2

(dashed) states for Z = 92.

Figure 21: As in figure 20, but for Z = 82.
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Figure 22: As in figure 20, but for Z = 79.

We also notice that the L-shell contribution for hydrogen is almost exactly 1
8

at
all impact energies - this was of course to be expected, since the only appreciable
contribution comes from the 2s-state.

Figure 23: Ratios σ2s

σK
(full curve),

σ2p 1
2

σK
(dotted) and

σ2p 3
2

σK
(dashed) for Z = 92

54



Figure 24: Ratios σ2s

σK
(full curve),

σ2p 1
2

σK
(dotted) and

σ2p 3
2

σK
(dashed) for Z = 82

Figure 25: Ratios σ2s

σK
(full curve),

σ2p 1
2

σK
(dotted) and

σ2p 3
2

σK
(dashed) for Z = 79

The high energy limit for the L-shell cross sections is easiest obtained by
extrapolating the high energy limit for the shell ratios - the high energy limits
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Figure 26: The ratio σL

σK
as a function of the energy of the emitted positron for

Z=92 (full curve), 82 (dotted), 79 (dashed) and 1 (chained).

displayed in table 1 may then be used to compute the cross section at a given
(high) energy. These shell ratios are displayed in table 2 for the four elements
for which calculations were done, and compared to the results obtained by Pratt
(1960b).

Z 2s 2sP 2p1
2

2pP
1
2

2p3
2

2pP
3
2

92 0.129 0.130 0.0598 0.0576 0.0201 0.0212
82 0.128 0.128 0.0385 0.0374 0.0178 0.0179
79 0.127 0.127∗ 0.0340 0.0331∗ 0.0171 0.0165∗

1 0.125 0.125 1.24 · 10−6 1.25 · 10−6 4.24 · 10−6 4.44 · 10−6

Table 2: High energy limits of the ratios σL

σK
.The results marked with P are Pratt’s

high-energy results, except for the case Z = 1, where the high energy limit of
Gavrila’s Born approximation is used. As in table 1, the asterisk indicates that
the results are extrapolated from the data given by Pratt et al.
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9 Differential Cross Sections

The angular distribution of the emitted positrons depends strongly on the target
charge and the photon energy.
Regarding the latter, the spectra are, as might be expected, strongly contracted as
the energy increases. As for the former, it will be seen that the non-perturbative
character of the process is very evident, since the angular distributions at high
target charges are very different from the (Born-compatible) low-charge result.
It should be mentioned that since the distribution of the emitted positrons are
expected to be a function of the positron energy, different elements are compared
at the same value of the positron energy as opposed to the energy of the incoming
photon.

9.1 Angular Distribution for the K shell

In figure 27 we see a typical example, the angular distributions for three heavy
elements at a quite low energy (1.5 mc2). The emission is strongest in the for-
ward direction and decreases steadily until about 90 degrees, after which it stays
essentially constant.
At these relatively low energies, the distribution is rather broad and the cross
section for emission in the backward direction is non-vanishing. At higher ener-
gies, the spectrum contracts and falls of rapidly with a virtual cutoff at around
ϑ = 3

E
.

This is seen on figures 28 and 29, where the angular distributions for E = 5
and E = 10 are seen to be of nearly the same shape, apart from the contraction.
Indeed, at high energies the differential cross sections obey a scaling law, which
will be investigated below.

At low target charges (and not too low energies) the Born approximation is
valid, and it predicts that the differential cross section vanishes in the forward
direction and attains a maximum around ϑ ∼ E−1.

It is noteworthy, that this angular distribution is different from that of free-
free pair production, which has a maximum in the forward direction (cf. the result
given by Heitler).
This may be compared to the related processes of the photoelectric effect and
bremsstrahlung, where the former in the Born approximation is zero at ϑ = 0
while the latter has its maximum there.

This asymmetry of the bound-free and free-free processes has, historically
speaking, caused some concern; some investigators, among them Fano et al, saw
a problem in this and tried to apply a detailed balance argument to show that the
photoelectric effect must have the same angular distribution as the low-energy
tip of bremsstrahlung, 10 so the first Born approximation must be invalid, but

10That is, with a final-state electron momentum equivalent to that of the ground state.
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Figure 27: Differential cross section for bound-free pair production as a function
of positron emission angle for U (full line), Pb (dashed line) and Au (chained
line) at positron energy E=1.5.

Figure 28: As in figure 27 for E = 5.
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Figure 29: As in figure 27 for E = 10.

the argument did not hold: Gavrila’s second order Born approximation also van-
ishes in the forward direction (Gavrila 1961 - note that he erroneously states the
contrary in (1959)), and the present exact calculations also give results in good
agreement with the Born approximation.

This is seen in figures 30-32, where the angular distribution for hydrogen is
shown at three different energies. On these figures, we also show the Born ap-
proximation (106) for comparison. As expected (and as in the case of the total
cross sections), the results are in good agreement with the Born approximation,
especially at high energies. It seems that the small difference between the total
cross sections and the Born approximation (as shown on figure 6) at low ener-
gies mainly comes from the area near the peak, since the Born approximation
differential cross section is seen to be somewhat higher in this region.11

In figure 33-35, the corresponding distributions are shown for Z = 8. In
this case, we note that the relative importance of the contribution to the cross
section for ϑ = 0 is non-vanishing, so the transition towards the behaviour of the
differential cross section at higher energies has begun.

This is further illustrated on figure 36, which displays the angular distributions
for five values of Z, scaled by Z5, at E=1.5. Here, we can follow the steady
breakdown of the Born approximation (whose angular distribution vanishes in

11At low Z, our angular distribution is quite similar to that of the photoelectric effect - at
high Z, it is very different, since the K-shell photoelectric effect cross sections always have a
local minimum at ϑ = 0 (Alling & Johnson), and our results (and those obtained by Johnson
for single-quantum annihilation) display a maximum in the forward direction at high Z.
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the forward direction and corresponds to our results for hydrogen).

Figure 30: Differential cross section as a function of emission angle for H and
positron energy E = 1.5. The full curve is summed over spin states - we also
show the Born approximation (106) (dotted) and the contributions corresponding
to σλ = 1 (dashed curve)and -1 (chained), respectively, where λ is the helicity
state of the initial photon.

It is curious to note that while the total cross section decreases approximately
as E−1 with increasing energy, the differential cross section in the forward direc-
tion (or - generally speaking - at its maximum) keeps increasing. But this is as
it should be:
Indeed, at high energies we would expect the differential cross section to increase
linearly with energy near its maximum. To see why this is so, we remember that
the differential cross section is concentrated at ϑ ≤ 3E−1.
According to the mean value theorem, this means that for some angle ϑ0 in this
region, the differential cross section will attain the value σ0, so that

σ ∼ 2π
∫ 3E−1

0
sinϑdϑ

dσ

dΩ
= 6πE−1ϑ0σ0 (126)

If we assume that the angular dependence scale exactly with the energy, ϑ0 must
be a universal fraction of E−1, say, ϑ0 = aE−1, so that we have

σ =
f(Z)

E
=

6πaσ0

E2
⇒ σ0 =

f(Z)

6πa
E, (127)
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Figure 31: As in figure 30, this time for E = 5.

Figure 32: As in figure 30 but with E = 10. In this figure, and in figure 31, we
note the violent decrease of the “spin-flip” contribution σλ = −1 with increasing
energy.
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Figure 33: Differential cross section as a function of positron emission angle as
in figure 30 for Z = 8 and E = 1.5. Once again, we display the contributions for
σλ = +1 (dotted curve) and -1 (“spin-flip”, dashed).

Figure 34: As in figure 33, for E = 5.

62



Figure 35: As in figure 33, for E = 10.

Figure 36: The differential cross section as a function of emission angle at E = 1.5
for Z=1 (full curve), 8 (dotted), 26 (dashed), 55 (chained) and 92 (full, with a
maximum in the forward direction), scaled by Z5.
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that is, as stated above, the maximum value of the differential cross section is
expected to increase linearly with the energy.

This is illustrated on figure 37, where 1
E

dσ
dΩ

is shown as a function of Eϑ for
Z = 92. We note that while equation (127) does not appear to be completely
true in the region we have considered, it certainly does contain a great deal of
the truth and may be expected to hold good for higher energies. This scaling
property expressed in equation (127) is, of course, valid for all target charges.
For H, it is illustrated on figure 38. Note how the scaled maximum becomes
higher and more peaked - again we note that while the scaling law is not exact,
it certainly does contain some truth, and may be used for estimating the cross
section near its maximum at higher energies

Figure 37: 1
E

dσ
dΩ

as a function of E ·ϑ (ϑ in radians) for Z = 92 and E= 25 (full),
15 (dotted), 10 (dashed) and 5 (chained).

9.1.1 Polarisation Effects

If the incoming photon is polarised so that it is assumed to have, say, circular
polarisation corresponding to positive helicity, the resulting positrons will be more
or less polarised. The polarisation P (ϑ) of the produced positrons is defined by

P (ϑ) =
dσ(σ = 1) − dσ(σ = −1)

dσ(σ = 1) + dσ(σ = −1)
(128)

This polarisation function is the component of the polarisation vector in the
direction of the momentum of the emitted positron. If this component is 1 or -1,
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Figure 38: As in figure 37, but for Z = 1.

the emitted positron is completely polarised in the direction (or in the opposite
direction) of the momentum. We may also say that if P (ϑ) is equal to 1 or -1, the
incoming photon in a pure spin state will result in a positron emitted in a pure
state - if it is between 1 and -1, the emitted positron is in an incoherent state.
Because of the angular momentum selection rules, the positrons emitted in the
forward and backward directions are always completely polarised. On figures 39
and 40, we see the polarisation function for a light element (H) and a heavy
element (U), respectively.

Note that the hydrogen polarisation becomes complete for ϑ about 50 degrees
for E = 1.5, and for ϑ about 10 degrees for E = 10. This is, as noted by Olsen,
predicted by the Born approximation: we should expect the polarisation transfer
to be complete at an angle approximately given by

k0(k0 − 1)(1 − β cos ϑ) = 2 (129)

And this formula indeed predicts that the complete polarisation transfer should
occur at ϑ = 51.5 degrees for E = 1.5, and for ϑ = 9.3 degrees for E = 10. Upon
inspection in the data files, it appears that the maxima occur at 52.0 and 9.3
degrees, respectively.

And this leads to three observations: first of all, we note with satisfaction how
our predictions reproduce those of the Born approximation in the low-Z limit.
Secondly, the better agreement at the higher energy reflects the well-known fact
that the Born approximation is more accurate at higher energies. And finally,
that the complete absence of such phenomena in the polarisation functions for
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Figure 39: The polarisation function (128) for Z = 1 and E = 1.5 (full) and 10
(dotted).

Figure 40: As in figure 39, this time for Z = 92.
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U further demonstrates the complete breakdown of the Born approximation at
high target charges.

9.2 Angular Distribution for the L shell

The angular distribution from the 2s subshell is almost exactly equal to that of
the K shell, apart from the fact that it is reduced to about 1

8
for all elements.

The polarisation correlations etc. are practically the same, which is also not very
surprising, since both states have spherical symmetry and the energy dependence
of the total cross sections is also similar (apart from the factor of ∼ 8). We shall
thus have little to say about this subshell.

As an example of the above statements, the differential cross sections for
E = 1.5 are displayed on figure 41. Furthermore, on figure 42 we compare the
differential cross section for capture to the 2s shell for Z = 92 with 1

8
of the K

shell cross section. Once again, we note that even at high Z, the 1
n3 scaling law

is very close to the truth.
On figure 43, we show the differential cross sections corresponding to emission

of a positron of E = 1.5 and capture into the 2p1
2

state. Their form is very similar

to that of the s-state differential cross sections (though a little broader), but it
is easily seen that these cross sections increase more rapidly with Z.

Figure 41: Differential cross sections for capture into the 2s subshell at E = 1.5
for our three heavy example elements
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Figure 42: Differential cross section for capture into the 2s subshell for Z = 92
at E = 1.5, compared to 1

8
of the corresponding K-shell cross section (dotted).

Figure 43: As in figure 41, but this time with capture to the 2p1
2

subshell.
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Figure 44: As in figure 43, but for E = 5

Figure 45: As in figure 43, but for E = 10
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It is interesting to note that the angular distribution at Z = 1 is entirely
different from that of the s-states. As we see on figure 46-48, the cross section
for this shell has its maximum in the forward direction even for low Z.
This is in good agreement with Gavrila’s perturbation result (1961), which pre-
dicts a narrower distribution than for the K shell with a maximum at ϑ = 0.

The fact that the angular distribution of the 2p1
2

shell has its maximum at

ϑ = 0 while the K- and 2s-shell distributions nearly vanish there does not,
however, mean that the contribution of the 2p-states to the differential cross
section in the forward direction is larger than that of the 1s and 2s states for low
Z - even though the latter have a minimum there, they do not exactly vanish,
and they are still about two orders of magnitude larger than the maximum of
the 2p1

2
-state. The polarisation functions for Z = 1, displayed on figure 49,

Figure 46: Differential cross section for pair production with capture to the 2p1
2

state as a function of emission angle for H and positron energy E = 1.5. The full
curve is summed over spin states - as in figure 30, we also give the contributions
corresponding to σλ = 1 (dashed line)and -1 (chained curve), respectively, where
λ is the helicity state of the initial photon.

are also completely different from the corresponding s-state polarisation function
shown on figure 39. Note that we do not, as were the case for the K shell, have
complete polarisation transfer - instead, we have complete polarisation reversal

(complete spin-flip) at a certain angle.
On figure 50, we show the polarisation function for the case Z = 92 - as for
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Figure 47: As in figure 46, this time for E = 5.

Figure 48: As in figure 46 but with E = 10.
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Figure 49: The polarisation function (128) for Z = 1 and E = 1.5 (full line) and
10 (dotted line) for capture to the 2p1

2
subshell.

Figure 50: As figure 49 , this time for Z = 92.
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the K shell, this is completely different from the case Z = 1, which once again
emphasises the breakdown of the Born approximation.
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Part III

Pair Production in Relativistic

Ion Collisions

10 The Impact Parameter Model

Direct pair production may occur in relativistic collisions of charged particles.
The cross sections for these processes are easily calculated in perturbation theory,
as given, for instance, by Feynman for a muon incident on a nucleon. In this case,
we have two Feynman diagrams of the type shown in Fig 51.

In the case of collisions of heavily charged ions, these perturbation results
become invalid, and an exact calculation is needed (see, for instance, Eichler
(1990), Momberger et al (1996), and Baltz et al, and references therein.)
This process is, however, very difficult to calculate exactly, so that we shall make
the following approximations, arriving at the situation described in Figure 52.
Let us for simplicity consider the process of excitation or ionisation, and imagine
the target to be a hydrogen-like system of arbitrary charge Z and the projectile
to be a fully stripped ion of charge Zp (in units of the elementary charge e). The
approximations and definitions to be used are

• Any influence of the electron on the motion of the ions is neglected, which
amounts to considering the ions as very much heavier than the electron.

• The target nucleus is treated as an infinitely heavy point charge located at
the origin.

• The projectile is treated as a classical particle moving with velocity β -
furthermore, the influence of the Coulomb field from the target ion on the
particle is neglected, and the hyperbolic motion displayed by a charged
particle in a Coulomb field is replaced by the corresponding straight-line
trajectory.

• The motion of the particle is taken to be parallel to the z-axis, passing
the origin at the minimum distance b (b thus being the impact parameter),
which offset is taken to be along the x-axis in the calculations.

The calculation of ionisation or excitation cross sections is now reduced to com-
puting the probability for the target electron of going to a given final state in
the time-dependent electromagnetic field of the particle ion for arbitrary impact
parameters, and subsequently integrate this result over the impact parameter
plane.
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Figure 51: One of the Feynman diagrams needed for perturbation calculations of
pair production in ion collisions (from Feynman).

The main result of these approximations is that we have succeeded in reduc-
ing an extremely difficult quantum mechanical three-body problem to the merely
very difficult problem of calculating the time development of the electronic wave
function in the time-dependent field of the particle - thus ensuring that the prob-
ability of the process can be given in terms of single-electron matrix elements.
Since the ions are so much heavier than the electron, the impact parameter ap-
proximation is valid, and the difficulty of calculating the process exactly arises
solely from the intractability of the time-dependent one-electron problem in the
relativistic case.
Turning our attention to pair production, the initial state is now taken to belong
to the negative energy continuum, while the wave function of the resulting elec-
tron is taken to be the final state, as discussed in section 3.5. That is, once more
the process of pair production is viewed as an “ionisation from the negative-energy
continuum”, and the treatment is completely analogous to that of ionisation.

Extensive reviews of relativistic heavy ion collisions (RHIC) in the impact
parameter model (by some also called the semi-classical approximation, often
abbreviated SCA) are given by Eichler (1990) and Bertulani & Baur.
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Figure 52: Ion collisions as considered in the impact parameter model

11 Calculation of Transition Probabilities

As we have seen, by applying the impact parameter model we have reduced the
problem of finding the cross sections for the various cross section to that of cal-
culating the transition amplitudes for a one-electron system in a time-dependent
potential.

The theory for these processes may then be based on time-dependent quan-
tum theory, which will permit us to write up relations which are, in principle,
exact. In order to compute transition probabilities, however, it may be neces-
sary to introduce various approximations, of which the most popular is the Born
approximation.

We shall also examine another approximation, the “sudden collision” or Mag-

nus approximation, which has been used many times in problems from nuclear
and nonrelativistic atomic physics. Recently, it has been attempted to use it in
the relativistic regime (Ionescu), and an attempt has also been made to use it
in connection with the present work. Later, however, we shall see that the first
Magnus approximation is not very convenient in RHIC or in relativistic atomic
physics in general.

11.1 The Transition Operator

Let us imagine we have a quantum-mechanical system whose wave function at
t = −∞ and t = +∞ (that is, its initial and final states) are solutions of a time-
independent Hamiltonian H0. Let us also imagine that we want to compute the
probability for going from an initial state characterised by the quantum numbers
i to a final state, characterised by the quantum numbers f . These states will be
assumed to be stationary solutions of H0, so that

H0Ψ
0
i = EiΨ

0
i , H0Ψ

0
f = EfΨ

0
f (130)

76



Furthermore, we may imagine the system to be perturbed by a time-dependent
interaction potential V (t), so that for arbitrary times the time development is
given by 12

i
∂Ψ0(t)

∂t
= [H0 + V (t)] Ψ0(t) (131)

Defining some new wave functions Ψ(t) by

Ψ(t) = eiH0tΨ0(t) (132)

we find that they fulfil the “reduced” equation

i
∂Ψ(t)

∂t
= V̄ (t)Ψ(t) (133)

where the interaction potential is transformed, so that

V̄ (t) = eiH0tV (t)e−iH0t. (134)

In the new representation (the interaction representation) the operators from
the normal representation (where the state vectors obey (131)) must undergo a
similar transformation in order to conserve the values of all scalar products.
(133) has the formal solution

Ψ(t) = Ψi − i
∫ t

−∞
dt′V̄ (t′)Ψ(t′),Ψi = Ψ(t = −∞) (135)

Defining the time evolution operator (actually a Green’s function) O(t, t′) by

Ψ(t) = O(t, t′)Ψ(t′), (136)

it is clear by insertion and iteration of (135) that

Ψ(t) = O(t,−∞)Ψi (137)

where13

O(t,−∞) = 1 − i
∫ t

−∞
dt′O(t′,−∞) (138)

= 1 − i
∫ t

−∞
dt′V̄ (t′) + i2

∫ t

−∞
dt′V̄ (t′)

∫ t′

−∞
dt′′V̄ (t′′) + . . .

12It might be argued that (131) looks conspicuously like a Schrödinger equation, while we are

mainly concerned with the Dirac equation in this work. But relations of the type i
∂Ψ(t)

∂t
= HΨ

is true for the time development of any quantum system; it is the dynamic equation of quantum
theory. The Schrödinger, Pauli or Dirac equations are thus all special cases, corresponding to
different kinds of wave functions (in relativistic quantum theory, different representations of
the Lorentz group).

13Yes, I am certainly skipping some details here. The process of matching the number of
terms with factorials in the denominator is described in some detail in Weissbluth, chapter 9.
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= Te
−i
∫ t

−∞
dtV̄ (t)

In this equation, T denotes the time ordering operator defined by

T{A(t)B(t′)} =

{

A(t)B(t′), t > t′

B(t′)A(t) t < t′
(139)

Comparing (130) to (138) finally yields

Ψ(t = +∞) = SΨi =
{

Te−i
∫

∞

∞
dtV̄ (t)

}

Ψi (140)

where we have defined the scattering matrix or S-matrix

S = O(∞,−∞). (141)

The amplitude for going from the initial state with quantum numbers i to the
final state with quantum numbers f is thus given by

Sfi =< f |S|i >=< f |Te−i
∫

∞

−∞
dtV̄ (t)|i > (142)

In perturbation theory one usually expands (142) from the assumption that the
interaction potential is weak; in many cases one thus only retains the first term,
which yields

< f |S − 1|i >= −i < f |
∫ ∞

−∞
V̄ (t)dt|i > (143)

This is, of course, the first Born approximation, which is valid to first order in the
(supposedly weak) interaction potential. In the sudden collision approximation

(SA), on the other hand, the expansion is not in the magnitude of the interaction,
but in the duration of the process, which is equivalent to assuming that only a
small time interval contributes substantially to the sum (138), or, alternatively,
that the interaction potential commutes at different times14. The method is
described by Eichler (1976) and also in some detail by Bransden and McDowell.
The point is that, departing from (142) we introduce the expansion

Sfi =< f |e−i
∫

∞

−∞
V̄ (t)dt+ 1

2!
i2
∫

∞

−∞
dt
∫ t

−∞
dt′[V̄ (t),V̄ (t′)]+...|i > (144)

If only a very narrow range of times actually contribute to the integrals, one may
retain only a few terms. The first term of this expansion (and the only one we
will retain) is

< f |S − 1|i >=< f |e−i
∫

∞

−∞
V̄ (t)dt|i >, (145)

and this will correspond to regarding the collision process as instantaneous; this
approach is also called the Magnus approximation. If the interaction potential

14This is not the case for RHIC in the impact parameter model, which we will discuss in the
next section.
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should happen to commute at different times, the first Magnus approximation is
of course exact.
A thorough derivation of the Magnus expansion (144) and a discussion of its con-
vergence properties including the conditions for using (145) is given by Pechukas
& Light.

11.2 Coupled Channel Equations

A formulation of the time-propagation problem which is wholly equivalent to
the derivation of the S-matrix given in the preceding section leads to the so-
called coupled channel equations. Since this formulation is very much used, and
since coupled channel calculations have frequently been used in the calculation of
probabilities of the various processes in RHIC, we shall include a short discussion
of these.
The starting point is, once again, the time-dependent equation in the interaction
picture,

i
∂Ψ(t)

∂t
= V̄ (t)Ψ(t) (146)

We may, of course, expand Ψ on a basis of stationary states, so we can write

Ψ =
∑

n

an(t)|n >, (147)

which upon insertion in the above equation reduces to equations for the coeffi-
cients an, that is,

i
dan(t)

dt
=< n|V̄ |Ψ >=

∑

k

ak(t)Vnke
i(En−Ek)t, Vnk =< n|V |k > (148)

In coupled channel calculations, these equations are integrated numerically with
the limiting condition

lim
t→−∞

an(t) = δni (149)

and at plus infinity (practically speaking, at some advanced, finite time) the
resulting wave function Ψ is to be projected on the final state, so that the prob-
ability of the transition becomes

| < f |Ψ > |2 = |af(∞)|2 (150)

It should be noted that the equations (148) also serve as the starting point for
time-dependent perturbation theory. Thus, the Born approximation (143) may
be obtained by setting the ak on the right-hand side of (148) equal to δki.
In actual calculations, the basis of stationary states must of course be finite, and
this truncation of the basis may severely limit the precision of the calculations,
as discussed by Baltz et al - see also the discussion in Momberger et al (1996).
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12 Transition Probabilities in RHIC

12.1 Born Approximation

In the impact parameter model, the formalism of the preceding section may be im-
plemented with the Coulomb potential of the target as the time-independent po-
tentialH0, while the interaction potential is represented by the Lorentz-contracted
Coulomb potential of the particle (as described by Eichler (1990) and Bertulani
& Baur). This must be introduced in the Dirac equation by minimal coupling,
so that the resulting potential becomes15

Vp(r, t) = −γ(1 − βαz)
αZp

√

(x− b)2 + y2 + γ2(z − βt)2
(151)

The process of bound-free pair production may be described by the use of this
potential, and this is exactly what has been done by a number of authors, albeit
with rather different approaches.

In the Born approximation (143), the transition probability becomes

P (b) = |Sfi|2 = | < 1s|
∫ ∞

−∞
ei(E1s+Ep)tVp(r, t)dt| −Ep > |2, (152)

where |1s > of course is to be interpreted as the electronic state corresponding to
the ground state of the unperturbed target, while |−Ep > is the wave function of
the negative continuum corresponding to the energy Ep of the emitted positron.

Upon taking the time integral in (152), the corresponding probability ampli-
tude becomes

afi = −2i
αZp

β
< 1s|ei

E1s+Ep

β
z(1 − βαZ)K0





(E1s + Ep)

β

√

(x− b)2 + y2

γ



 | −Ep >

(153)
where K0 is a modified Bessel function of the second kind.
In order to obtain the total cross sections for pair production in the Born approx-
imation, “all” one has to do is compute these matrix elements, square them, sum
them over partial waves, integrate them over the positron energy and, finally,
take the integral over the impact parameter plane.

The calculations in the Born approximation for bound-free pair production
were done by Becker et al in 1986.

12.2 Coupled channel calculations

Coupled channel calculations may be implemented as described in the preceding
section, in analogy to the Born approximation procedure. Such calculations were

15In this and the following equations, αz is the z component of the matrix vector defined by
equations (5) and (7).
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reported in 1991 by Momberger et al (1991) and by Rumrich et al. Rumrich et al

calculated the transition probabilities for a number of of different projectiles on
a Z = 82 target. For this purpose, they used a basis set consisting of 334 states,
including the 22 lowest bound states. They reported a considerably higher transi-
tion probability at low impact parameters than predicted by perturbation theory
(about two orders of magnitude larger than those obtained using the Born ap-
proximation discussed above), which led them to conclude that the perturbation
theory underestimates the total cross section by as much as a factor of 5.

Later calculations by Baltz et al using larger basis sets (which was not fea-
sible for the authors mentioned above) showed a considerable reduction of the
nonperturbative enhancement, and by varying the size of their basis they were
able to show that the enhancement behaved like a decreasing function of the size
of basis - and this definitely indicates that the calculations of Rumrich et al were
not sufficiently accurate due to the truncation of the basis set.

Recent calculations by Momberger et al (1996) which did not involve coupled
channel calculations also denies the appearance of this so-called “nonperturbative
enhancement” and ascribe the results of Rumrich et al to failure of convergence
due to the truncation of the basis set.

12.3 Magnus Approximation

The SA was introduced in ion-atom collisions in the non-relativistic regime by
J. Eichler in 1977, who introduced it for the study of ionisation in ion-atom
collisions.
Eichler started with the expansion (144), and argued that if only the collision
time was very much smaller than the typical orbit times of the system, the time
structure of the process might be wholly ignored, and the transition operator for
the process would to a good approximation be given by (145)
He further argued that if this was the case, then the effect of the transformation
(134) to the interaction picture was negligible, so that he might simply take
V̄ = V .
These two steps, however, actually represent two different assumptions, which it
is convenient to spell out.

• First of all, the collision time must be very much smaller than the charac-
teristic orbit times of the perturbed system.
The appropriate collision time must here be taken as the duration of the
interaction at a single point; in RHIC, this is the passage time b

γβ
of the

Lorentz-contracted Coulomb field of the particle. This is so, since the terms
in the exponent in the expansion (144) will contain powers of the interaction
potential, which falls of with time, so that it is, effectively, an expansion in
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b
γβ

(or rather: in the ratio of the duration of the interaction to the charac-

teristic orbit times (Pechukas & Light)).

• Secondly, in order to neglect the transformation to the interaction picture
we must demand that the time interval that contributes to the time integral
in equation (145) is much smaller than the time h̄

∆E
that characterises the

electronic process, and this time interval is of the order of the time it takes
the ion to pass over the dimensions of the target atom.

Eichler did not point out the fact that two different assumptions are involved,
since this is not necessary in the case of ionisation in the nonrelativistic domain.

This approach was later used by Salop & Eichler for the study of ionisation
in ion-atom collisions. The SA has also been used by a number of other authors;
Wille, for instance, used it for the process of rotationally induced inner-shell
excitation, where he was able to limit his calculations to a finite basis.

In the course of the work on the present thesis, some work has been done
along these lines. It has been realized, however, that the approximation of taking
the transformed and untransformed interaction potentials to be equal is wholly
inapplicable in the relativistic regime. Indeed, if one were to set Vp = V̄p, the SA
would become

afi =< f |e−i
∫

∞

−∞
V (r,t)dt|i >, (154)

where the integral in the exponent is

∫ ∞

−∞
dtV (r, t) = −γ(1 − βαz)αZp

∫ ∞

−∞
dt

1
√

(x− b)2 + y2 + γ2(z − vt)2
(155)

This integral is divergent, but it can be shown, that this divergence only con-
tributes a constant (but infinite) phase factor, and thus does not contribute to
probabilities. Indeed, if in the Born approximation integral (152) we let E1s +Ep

tend towards zero, the argument of the modified Bessel function will tend to zero,
and we can introduce the approximation

K0(x) ∼ − lnx for x ≪ 1 (156)

Thus we obtain

∫ ∞

−∞
dtV (r, t) = −2

αZp

β
(1 − βαZ)K0





(E1s + Ep)

β

√

(x− b)2 + y2

γ



 (157)

∼ 2
αZp

β
(1 − βαZ)

[

ln
√

(x− b)2 + y2 + ln
E1s + Ep

γβ

]

The last term inside the square bracket diverges as E1s + Ep → 0, but since
it is does not depend on r, it will only contribute to the matrix element with a
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phase factor, which (albeit infinite) will have no influence on probabilities.
As a result, the transition amplitude then becomes

afi =< f |e−2i
αZp

β
ln

√
(x−b)2+y2 |i > (158)

If this approximation were feasible, it would provide an interesting non-perturbative
approximation (that is, it would, in principle, take exact account of both the par-
ticle and target potential) in the high-energy limit.

This is unfortunately not so, since it should then reduce to the Born approxi-
mation (152) in the limit of low Zp. But it does not, since it lacks the “translation

factor” ei
(E1s+Ep)z

β which is definitely not negligible in the present case.
If one compares with (152), one finds that a translation factor similar to

e
i

E1s+Ep

β
z also occurs in the non-relativistic case16 and it becomes clear that in the

limit where the Born approximation becomes valid, this corresponds to the dipole
approximation known from the theory of electromagnetic transitions, which again
corresponds to the neglecting of retardation effects (as discussed by Pratt et al,
page 303).

But if we want to attempt the SA and retain the transformation to the in-
teraction picture, we would, indeed recuperate the Born approximation; a com-

plication is that the matrix elements of the operator e
−i
∫

∞

−∞
dteiH0tVpe−iH0t

would
become difficult to compute. Indeed, by introducing the definition of the expo-
nential function, we obtain

< f |e−i
∫

∞

−∞
dteiH0tVpe−iH0t

|i >= δfi − i < f |
∫ ∞

−∞
dtVp(r, t)e

i(Ef−Ei)t|i > (159)

+
i2

2!
< f |

∫ ∞

−∞
dt
∫ ∞

−∞
dt′eiEf tVp(r, t)e

−iH0(t−t′)Vp(r, t
′)e−iEit

′|i > + . . .

The only simple way to calculate this operator would probably be by diagonal-
ising the interaction potential V̄p, and this could only be done numerically, in a
finite basis. Thus, the impossibility of neglecting the transformation of the inter-
action potential leads to the necessity of introducing a truncated basis set - and
the procedure would be no simpler and less reliable than the coupled channels
approach.
This should be a sufficient demonstration that the last of Eichler’s assumptions
will not hold good in the relativistic regime, and that the SA is, if valid, at least
impractical in connection with RHIC.

We thus conclude that while the SA may well be feasible in atom-ion collisions
in the nonrelativistic regime, it does not appear to be practical in the relativistic
case, since it does not appear to be possible to avoid the introduction of a finite
basis set.

16In the guise of the well-known translation factor eiq·r, where q is the momentum transfer:
the necessity of this factor is also argued, for instance, in Bransden and McDowell.
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Figure 53: Flattening of the electromagnetic field due to a relativistic point
charge, and the two corresponding equivalent pulses of photons (from Bertulani
& Baur).

13 Weizsäcker-Williams Approximation

13.1 The Virtual Photon Approach

In the virtual photon method, one exploits the fact that the electromagnetic field
due to a very fast point charge gets Lorentz contracted, ’flattened’, becoming
nearly transversal at very high energies. The situation is depicted in figure 53.17

Indeed, assuming a particle of rest mass M to move in a straight line along the z
axis, passing the origin at the distance b on the x axis as described above, with
the relativistic parameter γ (corresponding to the energy E = γMc2), the fields
in the laboratory systems are

Ex(t) =
Zpγb

4π

[

b2 + γ2β2t2
]3

2

By(t) = βEz(t) (160)

Ez(t) =
−Zpγβt

4π

[

b2 + γ2β2t2
]3

2

For γ ≫ 1, the two first fields are completely equivalent to a pulse of photons
incident on the particle along the z axis.
The electric field component Ez does not really correspond to any pulse since it
has no accompanying magnetic field. One may, nevertheless, add a magnetic field
and find that the electric field of the particle becomes equivalent to two incoming
pulses, as seen on figure 53.

17The theory given in this subsection is an outline of the detailed exposition given by Jackson
- a thorough discussion of the method is also given in the article by Williams.
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The intensity of the equivalent photon pulses may be expressed in terms of the
Fourier transforms of the fields, and read:

I1(ω) =
1

4π
|E1(ω)|2 =

αZ2
p

π2b2
ξ2K2

1 (ξ) (161)

I2(ω) =
1

4π
|E1(ω)|2 =

αZ2
p

π2b2
1

γ2
ξ2K2

0 (ξ),

where we have defined ξ = ωb
γβ

, and where the K0 and K1 are modified Bessel
functions of the second kind.
The probability that a given atomic process occur in the collision may now be ex-
pressed in terms of the same process to be caused by the equivalent photons - that
is, by integrating the photon intensity spectrum multiplied with the photoelectric
cross section for the same process and integrating over the whole spectrum:

P (b) =
∫

(I1(ω) + I2(ω))σ(ω)
dω

ω
=
∫

N(ω)σ(ω)dω (162)

where N(ω) is the equivalent photon number, the number of equivalent photons
per unit area. The integral over the impact parameter plane may, as discussed by
Jackson be done analytically, and the total cross section for the atomic process
in question then becomes

σ = 2π
∫ ∞

bmin

P (b)bdb =
∫

dωσ(ω)
n(ω)

ω
, (163)

where

n(ω) =
2αZ2

p

πβ2

[

xK0(x)K1(x) − 1
2
β2x2(K1(x)

2 −K0(x)
2)
]

, x =
ωbmin

γβ
.

(164)
The integral over b diverges at b = 0, so it is necessary to introduce the parameter
bmin, which is a cutoff parameter which must be chosen differently for different
processes.
The contribution for impact parameters below bmin must be neglected or ac-
counted for or estimated by some other method. At high energies, the contri-
butions from large impact parameters become increasingly important, and the
contribution which is neglected by the introduction of bmin is of no consequence.
In order for the approximation to be valid, the results so obtained should not de-
pend strongly on the choice of bmin. Since the modified Bessel function in (164)
decays exponentially for x ≥ 1, the main contribution to the cross section will
come from photons for which

ω ≤ γβ

bmin

. (165)
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13.2 The Virtual Photon Approach and Bound-Free Pair

Production

The virtual photon approximation may be used, with the exact cross sections for
bound-free pair production which we calculated in part II, for obtaining the cross
sections for bound-free pair production in RHIC.
The method is perturbative, so it is not expected to give very good results for
high projectile charges - on the other hand, it is very easy to implement once the
photoproduction cross sections are known, and even for high projectile charges it
may provide a valuable estimate of the cross section with exact inclusion of the
dependence of the process on the target field.
What minimum impact parameter bmin must be chosen in this case? As argued
by Jackson, it cannot be chosen to be less than the Compton wave length of the
lightest particle involved, as also discussed by Hencken et al. But we can be more
precise than that:
If we compare the arguments to the modified Bessel functions in equations (164)
and (153), it becomes clear that one of the approximations involved in the virtual
photon approach is to assume that the main contributions to the cross section

will come from regions where the transversal distance
√

(x− b)2 + y2 between the

electron and the projectile in equation (153) may be taken to be equal to b, that
is, outside the atom (see also the discussion in Baltz et al).

The same conclusion is reached by considering the related process of K-shell
ionisation (as also argued by Williams) - here, the contributions from impact
parameters inside and outside the atom are of a quite different nature, and the
equivalent photon model is only applicable in the latter region.

In order to be consistent with this assumption, bmin must be chosen equal to
or larger than the Bohr radius 1

αZ
of the target.18

The contributions from lower impact parameters must be included or estimated
by other means, but at very high energies they will not be important. Since
there are certain similarities between the expressions for the Born and WW ap-
proximations, as noted above, it would seem consistent to try to estimate the
contributions from b < 1

αZ
by taking the results from the perturbation calcula-

tions by Becker et al.
Alternatively, one might estimate the result from the more reliable numerical

results recently reported by Momberger et al (1996) and Baltz et al - but this
approach involves an assumption that the collision will be well described by
perturbation theory for impact parameters higher than 1

αZ
, while nonperturbative

calculations must be used in closer collisions - and this assumptions is not a priori

easy to justify.

18This is in contradiction with the practice in much of the literature of recent years, cf.
Bertulani & Baur or Aste et al. The tendency has been to choose bmin equal to one Compton
length in analogy with free-free pair production (where the wave functions are not localised in
the neighbourhood of the nucleus.)
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13.3 Results

Since, as has been mentioned, we have been led to demand that the parameter
bmin should be chosen approximately equal to (and not smaller than) the Bohr
radius of the target, we have only considered our three heavy example elements,
that is, Au, Pb and U. Since the exact value of bmin should not be important, we
will consistently choose bmin = 2 throughout the calculations.

The calculations have only been performed for capture to the K shell - the
result for the L shells may, within the accuracy expected from the virtual photon
method, be obtained by multiplying the result for the K shell with the high-
energy limits listed in 2.

Figure 54: Cross sections for bound free pair production with capture in the
collisions Zp + Z for Z=92, 82 and 79, scaled by Z2

p , as a function of collision γ
(γ = 1√

1−β2
).

In figure 54 we display the results of such calculations for γ between 1 and
3400. For ω ≤ 50, the integral in (163) was done using the exact cross sections
obtained Part II of the present work - for ω > 50, the modified Born approxima-
tion (123) was used, where the values for f(Z) were taken from table 1.
In order to compare the results obtained in the present work with those obtained
by others, we have also calculated the cross sections choosing bmin = 1.

In table 3, we display the following data, for collisions with a collision energy
of 10,100 and 20.000 Gev/amu (kinetic energy - this corresponds to γ ∼ 11.74,
108.4 and 21.471, respectively) for the collision system Au+U, with U as the
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target:

1. Our present results calculated using bmin = 2, which we believe is the most
consistent choice

2. Our present results, obtained using bmin = 1

3. The results reported by Aste et al, using bmin = 1

4. An estimate of the contribution to the total cross section for bound-free
pair production in RHIC from the region b ≤ 2, estimated from the data
of Becker et al (for E = 20.000 GeV, this contribution was estimated from
the data given by Baltz et al.).

5. The total cross section σpert, obtained from perturbation theory, taken from
Becker et al.

Figure 55: The WW-cross section for bound-free pair production in RHIC for
Z = 92, scaled by Z2

p with bmin = 2 as a function of collision γ, compared to the
corresponding curve for bmin = 1 (dotted). Wee see that at high energies, the
difference between the two curves becomes of no consequence.

First, we observe that the good agreement between our results for bmin = 1 and
those of Aste et al serves as a satisfactory check of our calculations.19

19The small discrepancy may arise from the fact that Aste et al actually give an extrapolation
formula, and that they have used equation (124) for the high energy limit.
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Ecoll/ (GeV/amu) bmin = 2 bmin = 1 Aste et al b ≤ 2, pert. theory σpert

10 5.58 13.1 - 8 13
100 39.8 54.8 54.4 13 50

20.000 165 182 183 16 295

Table 3: In this table, we compare our virtual photon cross sections (in barns) for
bmin = 2 and bmin = 1 with those of Aste et al and with the Born approximation
results obtained by Becker et al.

Secondly, we see that the result obtained by setting bmin = 2 and estimat-
ing the contribution from the inner region by perturbation theory yields almost
exactly the same result as taking bmin = 1. It thus seems that even though the
choice bmin = 1 cannot be justified physically, the extra contribution thus ob-
tained is a good approximation to the perturbation result for the contribution
for small b.

Thirdly, we see that the results thus obtained actually reproduce the pertur-
bation results of Becker et al for E = 10 and 100 GeV/amu. For E = 20.000, the
virtual photon results seem somewhat below the perturbation result - but this
result was in fact estimated, not calculated, by Becker et al, and if we estimate
it from the data given by Baltz et al, we obtain σpert=185 barn.

So it seems that the result of the WW-method using the exact cross sections
for photon-impact bound-free pair production is simply that of reproducing the
results of perturbation theory - as another example, Baltz et al obtained a per-
turbation cross section of 112 barn for bound free pair production in Pb+Pb
collisions at γ = 23.000 - our calculations yield 114 barn for bmin = 2, if we use
their value for the contribution for b ≤ 2, and 113 using bmin = 1.

At sufficiently high energies, it does not really matter whether we use bmin=1
or 2. This is illustrated on figure 55, where the two estimates of the cross sec-
tions (that is, for bmin = 1 or 2) are compared; we see that at very high energies,
the relative contribution from the closest collisions becomes negligible, and the
difference between the results obtained for the two values of bmin becomes of no
consequence. The reason for this is that at high energies, the contribution from
small impact parameters becomes nearly constant, so that from γ = 1000, the
difference between the two curves is nearly constant (and is equal to 0.0027 barn).
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14 Conclusion & Discussion

14.1 Photon Impact

We have performed a thorough theoretical investigation of the process of photon-
induced pair production with capture to an atomic shell in a Coulomb potential
- after obtaining exact (but not closed) expressions for the total and differential
cross sections of this process, we proceeded to present the result of the numerical
calculations of these formulae.

Our results for the K and 2s shells are in good agreement with the results
previously reported by Aste et al, Johnson et al, Sheth & Swamy and Johnson
- our results for the p shells are new, but for Z = 1 they agree with the Born
approximation. Our results for the high energy limit were in good, but not exact,
agreement with the high energy limits previously obtained by Pratt.
As discussed below, we believe that our extrapolation is correct, so that the
high energy limit of the four processes mentioned in section 2 has now become
better determined. The alternative, that the discrepancy is caused because the
present calculations have not been taken to sufficiently high energies, does not
seem probable, as was also discussed in section 8.1.

14.2 Relativistic Ion Collisions

Our most important result has been, that the results of the Weizsäcker-Williams
approximation using the exact photoelectric cross sections exactly reproduce
those of the first Born approximation for collision energies above 10 GeV/amu.
Our comparison of the choices bmin = 1 and bmin = 2 shows that even though
we think the choice bmin = 1 cannot be given a physical justification, it is, at
least for high target charges, a good approximation to the result obtained by
taking bmin ∼ the Bohr radius of the target ion and estimating the contribution
for bmin ≤ 2 by perturbation theory.

The coupled channel results obtained by Baltz et al using up to 7936 states
in the basis set indicate that the total cross section for Pb+Pb at γ = 23000 is
only about 7 % higher than the result obtained by perturbation theory.

Now, when the Weizsäcker-Williams approximation is capable of reproducing
the results obtained by perturbation theory, and if the cross sections obtained by
perturbation theory are not expected to be very much lower than the exact results
(Baltz et al; this is also confirmed by Momberger et al (1996), who report that
the “nonperturbative enhancement” at low impact parameters is only a factor of
4-5, nowhere near the two orders of magnitude reported by Rumrich et al), the
virtual photon approximation gives a valuable estimate of these cross sections;
moreover, this estimate is very much easier to obtain than the perturbation result,
and once the high energy limit is properly determined (as by our modified Born
approximation), it can easily be performed for any collision energy above 10
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GeV/amu.

14.3 Possible Continuations of the Present Work

What could be done in extension of the present project, and what have we left
undone?

Well, obviously we have not performed the calculation of the differential cross
sections for the 2p3

3
subshell - the reason for this is less than flattering, since

it was regarded as something that would be quite easy to do, and thus it was
postponed until too late. When it turned out to be a little less easy, it was found
that we had already enough material for the present thesis, and thus it was left
undone.

Another extension would be that of considering bound-free pair production
of heavy leptons, especially τ±. The cross sections for this process are extremely
small - indeed, if we could continue considering the target ion as a point charge,
we would be able to reuse the numerical results from part II merely by changing
all formulae to units of the Compton wavelengths λl of the heavy leptons.

Since the rest mass of the τ leptons is 3491 times that of the electron, this
would mean that the threshold energy would be about 3500 MeV instead of about
1 MeV, and at the same time the cross section for the process is reduced by a

factor
(

λC

λτ

)−2 ∼ 8 · 10−8. So pair production of heavy leptons (especially tauons)
is a process which is much more difficult to achieve and detect experimentally
than the the production of electrons and positrons.

But these considerations may only give a hint, an idea of the order of magni-
tude of the cross sections for heavy leptons, since the results from the preceding
section cannot be ’recycled’ in the proposed fashion. The wave functions are
modified by a number of additional effects, especially modifications due the the
finite nuclear size and quantum electro-dynamical self-energy. The results of these
modifications is that the cross sections for bound-free production of τ± is further
reduced.
The process is interesting, however, since if the cross sections are not too small,
it might be a possible way of forming tauonic atoms, which to the best of my
knowledge has never been observed.

It should be possible to obtain a useful estimate of the cross by taking account
of the finite nuclear size, which changes the wave functions dramatically (for
Z = 92, the Bohr radius of the tauonic atom is well within the nucleus) by
treating the nucleus as a constant, spherically symmetrical charge density. It has
been proposed20 that it should be possible to obtain a reasonable value for these
cross sections by using a nonrelativistic wave function for the ground state and
representing the positron as a plane wave.

20By Allan H. Sørensen, my supervisor at the present project.
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As for the estimates of the cross sections for pair production with capture in
relativistic heavy ion collisions, it should be possible to supplement the virtual
photon approximation with a high-energy approximation, which in analogy to the
modified Born approximation introduced in section 8.1 would make it possible to
obtain the correct energy- and projectile charge dependence in the high-energy
limit.

We reviewed one such possibility, the sudden collision approximation, and
found that it has the same drawback as the coupled channel method, that it
probably requires the introduction of a finite basis set. Nevertheless, it may still
be easier to apply than the coupled channel method which is very labourious,
as all the nonperturbative methods (cf. Momberger et al, 1996) which have been
attempted. Other high-energy approximations might also be found which do not
suffer from this shortcoming.
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15 Appendix A: Alternative Calculation of the

Integral K(s, sb, k, p0, p, k0)

Let us recall that this integral is given by

K(s, sb, k, p0, p, k0) =
∫ ∞

0
drrs+sbe−(p0+ip)rjk(k0r)F (s+1+iη, 2s+1; 2ipr) (166)

where in our application (for a given charge Z) the parameters s and k are
associated with the partial wave quantum numbers, while p and k0 are associated
with the photon energy.

Instead of introducing the finite series expansion (84) for the spherical Bessel
function, one may go another way altogether and obtain an alternative analytical
expression for the integral.
First, let us recall that the spherical Bessel function may be defined in terms of
the ordinary Bessel function,

jk(x) =

√

π

2x
J

n+
1
2
(x), (167)

Inserting this expression in (166), we obtain

K(s, sb, k, p0, p, k0) =

√

π

2k0

∫ ∞

0
drrs+sb−

1
2 e−(p0+ip)rJ

k+
1
2
(k0r)F (s+1+iη, 2s+1; 2ipr).

(168)
The reason that we are interested in doing an alternative computation of this

integral is that the analytical expression which we obtained in section 5 has the
drawback of being numerically highly unstable for certain classes of input.

In order to appreciate this, we consider the special choice of parameters

K(1
2
, 0, k, 1, 0, 1) =

√

π

2

∫ ∞

0
dre−rJ

k+
1
2
(r) (169)

This integral may be found in Gradshteyn and Ryzhik, and is given by the
simple analytical expression

K(1
2
, 0, k, 1, 0, 1) =

√
π

2
(
√

2 − 1)k+
1
2 (170)

It is clear upon inspection, that this expression decreases exponentially as k
increases. On the other hand, it is just as clear that if we try to evaluate this
expression using the result (93), it will be computed as a sum of an increasing
number of terms, the order of magnitude of which increases exponentially with in-
creasing k. This means that the exponential decrease is to arise by the successive
cancellation of (for high k) many very large terms.
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This is, of course, quite feasible mathematically, but computationally it means
that the error of the sum is going to increase at each step. Indeed, it was found
that computing (166) using the result (93) and the code given in Appendix B the
result was exact up to k = 10 - but at k = 14, the computation showed an error
of more than 4 per cent, and at k = 20, the computation of (93) yielded a result
that is four orders of magnitude too large!

But this is, of course, a rather special case. Do we have similar problems in
the use of (93) in the computation of matrix elements as considered in section 5?
The answer is that the parameters used in this case are rather complicated, and
that it is in no way clear that we do not.
The purpose of this Appendix is to provide an alternative way of computing (166)
which is numerically stable using the parameters from (169), and which is totally
unrelated to the procedure we already know.

In order to solve the integral (168), we introduce the integral representation
(90) of the confluent hypergeometric function, thereby converting our integral
into

K(s, sb, k, p0, p, k0) =

√

π

2k0

Γ(2s + 1)

Γ(s + 1 + iη)Γ(s− iη)
× (171)

×
∫ 1

0
duus+iη(1 − u)s−iη−1

∫ ∞

0
drrs+sb−

1
2 e−(p0+ip(1−2u))J

k+
1
2
(k0r)

=

√

π

2k0

Γ(2s + 1)

Γ(s+ 1 + iη)Γ(s− iη)

∫ 1

0
duus+iη(1−u)s−iη−1J(s+sb+

1
2
, p0+ip(1−2u), k+1

2
, k0)

where for convenience we have parametrised the integral

J(µ, α, ν, β) =
∫ ∞

0
dxxµ−1e−αxJν(βx) (172)

This integral may be found in Gradshteyn and Ryzhik (equation 6.621), ac-
cording to which we may write

J(µ, α, ν, β) =
2−νΓ(µ + ν)

βµ
[

1 + α2

β2

]
ν+µ

2 Γ(ν + 1)
F (
ν + µ

2
,
1 − µ− ν

2
; ν + 1;

β2

α2 + β2
)

(173)
And equation (171) is the main result of the present calculation, since it provides
a way of computing the integral (166): if only we can compute the integrand, we
may also compute the remaining integral by numerical integration. As opposed
to the solution of (166) obtained earlier, that is (93), this result is not “closed”,
since we express one integral in terms of another, and it is thus less “beautiful”.

The purpose, however, of deriving this expression is, as stated, to provide a
totally alternative way of computing the integral (166).
The hypergeometric function occurring in (173) could not be calculated using the
Gauss series, and the the generalised hypergeometric function was used.
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The integral (171) was computed using a a straightforward 5000-step trapeze-
integration which gave the correct results for the parameters (169) with an accu-
racy of about 0.1 per cent.
After that, it was used for computing the cross sections for bound-free pair pro-
duction for Z = 82 and k0 in the range from 2 to 6, and this gave the same results
as the other procedure, again within an accuracy of 0.1 per cent.
So even though it was in no way clear that our recipe for computing (166) was
numerically stable, its accuracy for the computation of matrix elements has been
confirmed (or at least corroborated).
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16 Appendix B: Pair Production Programs

In this section, we will list the code of the program that calculates the total cross
sections for the K shell. The implementation of the corresponding differential
cross sections is quite straightforward, and the L-shell cross sections are computed
after the same principles as for the K shell.
For the actual pair production routines, the whole code will be included, whereas
for the supplementary files functions and complex only the header files will be
listed. This Appendix will therefore contain the code taken from the following
files:

• The header for the data structure complex, complex.h.

• The header for the various necessary help functions, functions.h.

• The routines for the calculation of cross sections, radial integrals etc. are
specified in the header pairs. h, which also defines some useful constants.

• Passing from the specification files to the implementation, we first note that
the important integral given by (83) is implemented in a separate file, K.

c.

• The file pairs. c contains routines for computing matrix elements, radial
integrals and cross sections for the K shell.

• Finally, the file K-cross.c is included as an example of how to use the
implementations to produce a data file, in casu, producing a listing of the
K shell cross section for a given target charge.

compl. h:

# include <stdio.h>

# include <math.h>

/*************************************************************************

Implementation of complex numbers

*************************************************************************/

#define true 1

#define false 0

typedef char bool;

typedef double real;

typedef struct comp { real re; real im; } complex;

/*** Miscellanous standard operations ***/

void c_write(FILE *f,complex z);

real Re(complex z);

real Im(complex z);

bool is_zero(complex z);

complex one();
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complex i();

complex zero();

real c_mod(complex z);

real c_arg(complex z);

/* gives a value between -pi and pi, and pi on the negative real axis */

complex c_conj(complex z);

complex c_const(real x, real y);

/*** Arithmetical operations ***/

complex c_plus(complex z1, complex z2);

complex c_minus(complex z1, complex z2);

complex c_mult(complex z1, complex z2);

complex c_div(complex z1, complex z2);

complex c_re_mult(real a, complex z);

/*** Logarithms, exponential functions, that kind of thing ***/

complex c_exp(complex z);

complex c_log(complex z);

/* Branch cut along the negative real line */

complex c_sin(complex z);

complex c_sqrt(complex z);

complex c_pow(complex z,complex a);

complex c_re_pow(complex z, real a);

functions.h

#define alpha 0.00729927007

# include <stdio.h>

# include "math.h"

# include "compl.h"

#define STP 2.50662827465E0

/* gamma functions, spherical harmonics and other useful functions */

complex c_gammln( complex z);

real gammln(real xx);

int fac(real n);

real plgndr(int l,int m,real x);

complex Y(int l, real m, real theta, real phi);

real sqr(real x);

/* Spherical Bessel functions and hypergeometrical functions */

real j( int l, real x);
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complex hypgeo(complex a, complex b, complex c, complex z);

complex F(complex a, complex b,complex c, complex z);

complex F_deg(complex a, complex c, complex z);

/* Integrationsrutiner */

void trapez(real (* f)(real), real a, real b,real *s,bool clear);

real simpson(real (* f) (real),real a,real b);

real pol_int(real xa[],real ya[],int n,real x, real *y, real *dy);

real romberg(real (* f)(real),real a,real b);

real qromb(real(*func)(real),real a,real b);

pairs.h
:

# include "functions.h"

/* The units are fixed by the Compton wavelength */

# define lambda_c 38.6159065

/* The crucial integral */

complex K( real s,real s_b,int k,real p_0,real p,real k_0,real Z);

complex K1( real s,real s_b,int k,real p_0,real p,real k_0,real Z);

/* The integral J from Appendix A */

complex J(complex mu,complex alph, real nu, real beta);

/* Functions for matrix elements and cross sections for

* the K shell

*/

complex m_e(int L,real J, real m, real Z, real k_0);

real matrix_element(int L,real J, real m, real Z, real k_0);

real partial_cross_section(int L, real J, real m, real Z, real k_0);

complex sigma(real m,real Z, real k_0);

/* As well as for the L-shell - a little more this time! */

complex m_e_2p3(int L, real J, real m, real Z, real k_0);

real p3_2_partcs(int L, real J, real m, real Z, real k_0);

complex sigma_2p3(real m,real Z, real k_0);

complex m_e2p1(int L, real J, real m, real Z, real k_0);
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real p2p1_partcs(int L, real J, real m, real Z, real k_0);

complex sigma_2p1(real m,real Z, real k_0);

complex m_e2s(int L, real J, real m, real Z, real k_0);

real p2s_partcs(int L, real J, real m, real Z, real k_0);

complex sigma_2s(real m,real Z, real k_0);

extern FILE *out; /* Used for output in main program */

K.c
:

#include "pairs.h"

#define KMAX 300

complex I_p(real s, real s_b, short iota, real p_0, real p, real k_0, real Z){

complex fac_log,res;

real eta,E;

fac_log = c_minus(c_gammln(c_const(s+s_b-iota,0)),

c_mult(c_const((s+s_b - iota),0),

c_log(c_const(p_0,p+k_0))));

E = sqrt(p*p+1);

eta = -(alpha*Z*E)/p;

res = F(c_const(s+1,eta),c_const(s+s_b-iota,0),c_const(2*s+1,0),

c_div(c_const(2*p,0),c_const(p+k_0,-p_0))) ;

res = c_mult(res, c_exp(fac_log));

return res;

} /* I_p */

complex I_m(real s, real s_b, short iota, real p_0, real p, real k_0, real Z){

complex fac_log,res;

real eta,E;

fac_log = c_minus(c_gammln(c_const(s+s_b-iota,0)),

c_mult(c_const((s+s_b - iota),0),

c_log(c_const(p_0,-p-k_0))));

E = sqrt(p*p+1);

eta = -(alpha*Z*E)/p;

res = F(c_const(s,-eta),c_const(s+s_b-iota,0),c_const(2*s+1,0),

c_div(c_const(2*p,0),c_const(p+k_0,p_0))) ;

res = c_mult(res, c_exp(fac_log));

return res;

}/* I_m */

complex dat_vec[KMAX][KMAX];

complex dat_vec1[KMAX][KMAX];
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void K_init() {

int i,j;

for(i=0;i<KMAX;i++){

for(j=0;j<KMAX;j++) dat_vec[i][j]=zero();

}

for(i=0;i<KMAX;i++){

for(j=0;j<KMAX;j++) dat_vec1[i][j]=zero();

}

} /* K_init */

complex K( real s,real s_b,int k,real p_0,real p,real k_0,real Z) {

complex sum;

register short iota;

real fac = 1/(2*k_0);

sum = zero();

for (iota = 0; iota <= k; iota++) {

complex term,term1,term2, ph;

real ph1;

ph = c_re_pow(i(), k+1-iota);

ph1 = ((k+1-iota)%2 == 0) ? 1: -1;

term1 = I_m(s,s_b,iota,p_0,p,k_0,Z);

term2 = I_p(s,s_b,iota,p_0,p,k_0,Z);

term = c_plus(c_re_mult(ph1,term1),term2);

term = c_re_mult(fac,term);

term = c_mult(term,ph);

sum = c_plus(sum,term);

fac *= ((k+iota+1)*(k-iota ))/((iota+1)*2*k_0);

}; /* for */

return sum;

} /* K */

complex K1(real s,real s_b,int k,real p_0,real p,real k_0,real Z) {

int i = floor(s);

if (k>=0) {

if (is_zero(dat_vec[k][i])) dat_vec[k][i] = K(s,s_b,k,p_0,p,k_0,Z);

return dat_vec[k][i];

}

else return zero();

} /* K1 */

complex K2(real s,real s_b,int k,real p_0,real p,real k_0,real Z) {

int i = floor(s);

if (k>=0) {

if (is_zero(dat_vec1[k][i])) dat_vec1[k][i] = K(s,s_b,k,p_0,p,k_0,Z);

return dat_vec1[k][i];

}

else return zero();

} /* K2 */

pairs.c
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:

#include "pairs.h"

FILE *out;

real I_1(int k, int kappa,real Z, real k_0) {

real s = sqrt((kappa - alpha*Z)*(kappa + alpha*Z));

real s_1s = sqrt((1-alpha*Z)*(1+alpha*Z));

real E = k_0 - s_1s;

real p = sqrt((E-1)*(E+1));

real eta = -(alpha*Z*E)/p;

complex e_i_delta = c_sqrt(c_div(c_const(-kappa,-eta/E),c_const(s,eta)));

complex K_int = K1(s,s_1s,k,alpha*Z,p,k_0,Z);

real Im_fac = Im(c_mult(e_i_delta,c_mult(c_const(s,eta),K_int)));

real norm_facs;

if (k<0) return 0;

norm_facs = 2*sqrt((p*(E+1)*(1+s_1s))/(2*M_PI*exp(gammln(2*s_1s+1))))

*exp(.5*M_PI*eta)*pow(2*alpha*Z,s_1s+.5);

norm_facs = norm_facs*exp(Re(c_gammln(c_const(s,-eta)))

-gammln(2*s+1)+(s-1)*log(2*p));

return norm_facs*Im_fac; ;

} /* I_1 */

real I_2(int k, int kappa,real Z, real k_0) {

real s = sqrt((kappa - alpha*Z)*(kappa + alpha*Z));

real s_1s = sqrt((1-alpha*Z)*(1+alpha*Z));

real E = k_0 - s_1s;

real p = sqrt((E-1)*(E+1));

real eta = -(alpha*Z*E)/p;

complex e_i_delta = c_sqrt(c_div(c_const(-kappa,-eta/E),c_const(s,eta)));

complex K_int = K1(s,s_1s,k,alpha*Z,p,k_0,Z);

real Re_fac = Re(c_mult(e_i_delta,c_mult(c_const(s,eta),K_int)));

real norm_facs;

if (k<0) return 0;

norm_facs = -2*sqrt((p*(E-1)*(1-s_1s))/(2*M_PI*exp(gammln(2*s_1s+1))))

*exp(.5*M_PI*eta)*pow(2*alpha*Z,s_1s+.5);

norm_facs = norm_facs*exp(Re(c_gammln(c_const(s,-eta)))

-gammln(2*s+1)+(s-1)*log(2*p));

return norm_facs*Re_fac;

}

complex m_e(int L,real J, real m, real Z, real k_0) {

int kappa = (J == L+.5) ? -(L+1) : L;

if (m==.5) {

int ph = (J==L+.5)? -1 : 1;

real plus_fac,minus_fac,elm;

complex outphase;

plus_fac = (L+1)/(2.*L+1.);

minus_fac = L/(2.*L+1.);

outphase = (J==L+.5) ? c_re_pow(i(),L+2.0) : c_re_pow(i(),L);

elm = sqrt((2.0*J+1.0))*(I_1(2*J-L,kappa,Z,k_0)+ph*minus_fac*
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I_2(L-1,kappa,Z,k_0)- ph*plus_fac*I_2(L+1,kappa,Z,k_0));

return c_re_mult(elm,outphase);

}else if (m==-.5) {

real out_fac = (J==L+.5) ? sqrt(2*J+3): sqrt(2*J-1);

complex outphase = c_re_pow(i(),L);

real elm;

out_fac = (out_fac*sqrt(L*(L+1.0)))/(2.0*L+1.0);

elm = out_fac*(I_2(L+1,kappa,Z,k_0)+I_2(L-1,kappa,Z,k_0));

return c_re_mult(elm,outphase);

};

} /* m_e*/

real partial_cross_section(int L, real J, real m, real Z, real k_0)

/* These are the partial cross sections, to be summed over L,J,M;

* obviously k_0 is supposed to have a sensible value!

*/

{ real E,p,M;

E = k_0 - sqrt((1-alpha*Z)*(1+alpha*Z));

p = sqrt((E-1)*(E+1));

M = c_mod(m_e(L,J,m,Z,k_0));

return (4*M_PI*M_PI*lambda_c*lambda_c*alpha*M*M)/k_0;

}

complex sigma(real m, real Z, real k_0)

{ int L;

real sum=0, part=0,error=1;

for(L=0; (L<= 320)&&(error >1E-6); L++)

{ part = partial_cross_section(L,L+.5,m,Z,k_0);

if (L!= 0)

part = part + partial_cross_section(L,L-.5,m,Z,k_0);

sum = sum+part;

if (sum ==0){

if (L<=1) error = 1;

else error = 0;

} else error = part/sum;

};

if (L>=320) {fprintf(out,"k=%g, L=320 needed",k_0);fflush(out);}

return c_const(sum,error);

} /* sigma */
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K-cross.c
:

#include "pairs.h"

FILE *out;

main()

{ real k,k_0=3;

int Z;

real E_1s;

real sum=0.0,part;

complex half = c_const(.5,0);

char s[8];

fprintf(stderr,"Beregning af K-skals-tværsnittet \n");

fprintf(stderr,"Angiv Z: ");

fscanf(stdin,"%d",&Z);

fprintf(stderr,"Altså Z=%d \n",Z);

fprintf(stderr,"Angiv navn på datafil: ");

fscanf(stdin,"%s",s);

fprintf(stderr,"Resultaterne skrives til %s.data.\n",s);

E_1s = sqrt((1+alpha*Z)*(1-alpha*Z));

out = fopen(strcat(s,".data"),"w");

for (k = 1.1; k <5; k+=.1)

{ complex s1,s2;

K_init();

s1 = sigma(.5,Z,k+E_1s);

s2 = sigma(-.5,Z,k+E_1s);

fprintf(out,"%g\t%g\t%g\t%g\n",k,Re(s1),Re(s2),sqrt(sqr(Im(s1))+sqr(Im(s2))));

fflush(out);

}

for (k = 5; k <= 50; k+=1)

{ complex s1,s2;

K_init();

s1 = sigma(.5,Z,k+E_1s);

s2 = sigma(-.5,Z,k+E_1s);

fprintf(out,"%g\t%g\t%g\t%g\n",k,Re(s1),Re(s2),sqrt(sqr(Im(s1))+sqr(Im(s2))));

fflush(out);

}

}
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Figure 56: Simple kinematic model of Bound-Free Pair Production

17 Appendix C: Kinematical Considerations

As has been mentioned, we consider the target nucleus as an infinitely heavy
point charge, which will thus absorb the momentum which must be transferred
so that energy and momentum can be conserved in the reaction, but since it is
infinitely heavy it will absorb no kinetic energy and remain at rest at all times.
This means that we neglect all recoil effects.

Is this approximation valid? And under what conditions? To answer these
questions, let us look at the process from a purely kinematical21 point of view,
like in figure 56.

First, it is obvious that pair production could never take place without some
external field (or more photons) since the energy-momentum four-vector of the
initial state must have zero norm, while that of the final state must have a
finite, negative norm - so the conservation of energy and momentum requires the
presence of an additional mass in the initial state.
Introducing the mass M of the nucleus, the process of bound-free pair production
may take place if only k0 is larger than the threshold energy. This is defined as
the energy in which the photon is absorbed and the particles created with zero
kinetic energy in the centre-of-mass system of the final state:

Pi = (k0, ik0), Pf = (0, i(M∗ +m))

where M∗ is the rest energy of the hydrogen-like system of electron+nucleus,
M∗ = M + E1s. m is the electron mass, of course, which we retain for clarity.

The threshold energy is determined by demanding that the norms of the
initial and final states be identical, so that bound-free pair production may occur,

21Billiard ball dynamics!
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provided that

k0 > (E1s +m)[1 +
E1s +m

2M
] (174)

Neglecting recoil is equivalent to placing the threshold a little lower, and this is
justified if the factor in square brackets may be taken equal to unity, that is, if

E1s +m

2M
≪ 1

If the pair production is taking place on a proton , E1s+m
2M

∼ 1
1836

, and the threshold
is shifted a not quite negligible amount22 - for heavier elements, however, this shift
becomes utterly insignificant.

At photon energies above threshold, the assumption that the nucleus is in-
finitely heavy is equivalent to neglecting the recoil energy compared to the rest
energy of the nucleus. Denoting the momentum transfer of the reaction by q, the
condition is that

M

√

1 +
q2

M2
= M (175)

or, in other words, that
q2

M2
≪ 1 (176)

Looking once again at figure 56, we see from energy and momentum conservation,
that

q = k0 − p

k0 +M = E +M∗ (177)

Let us assume (for simplicity) that the kinetic energy of the nucleus is indeed
negligible. Then M∗ = M + E1s, and combining the two equations we obtain

q2 = 2k0(k0 − E1s)[1 − β cos ϑ] + E2
1s − 1, (178)

where β is the velocity of the emitted positron. When considering the validity of
neglecting the recoil, the two final terms may safely be neglected.

If k0 is of the order of a few electron masses, this condition simply becomes

m ≪ M

If k0 ≫ 1, however, (178) reduces to

q = 2k0 sin
ϑ

2
(179)

22About an electron volt, that is, approximately 1
13 of the binding energy of hydrogen
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which shows that the recoil may (for very large energies) be neglected at low
scattering angles, so the condition becomes

(k0ϑ)2 ≪ 1

4
M2 (180)

But since the differential cross section at very high energies becomes concentrated
in a cone of width ∆ϑ ∼ 1

k0
, this relation will practically always be fulfilled.

The approximation of neglecting the recoil is thus valid near threshold for
heavy ions, if not to good for protons, and valid for all nuclei at intermediate and
high energies.
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