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Pair creation with bound electron for photon impact on bare heavy nuclei
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In this paper we present numerical calculations for the process of bound-free electron-positron pair produc-
tion following photon impact on bare nuclei. The calculations are based on exact Coulomb waves. We include
total as well as differential cross sections for production of BotindL electrons for a wide range of photon
energies and nuclear charge numbers. Significant deviations from lowest-order Born theory appear for mod-
erate and high charge numbers in both the total cross section and, most dramatically, in the angular distribu-
tions of the emitted positrons. Our results for tdtakhell cross sections for photon impact as well as for ion
impact, in the latter case as estimated by the virtual photon method, basically confirm those et Alste
[Phys. Rev. A60, 3980(1994]. However, we note that by inclusion bfelectron production, the cross section
for the ion-induced process is increased by approximately 20% for heavy elef&1050-294{@7)05701-4

PACS numbd(s): 34.90+q, 32.90+a, 32.80.Fb, 13.46-f

[. INTRODUCTION Furthermore, we shall discuss cross sections for production
of L electrons, dependence on the positron emission angle
In recent years, a large effort has been devoted to th&r both shells and polarization effects. Throughout, we com-
study of atomic physics processes in relativistic heavy-iorpare with results obtained in the Born approximation as well
collisions[1]. In part, these investigations have been moti-as with more accurate results obtained by other authors for
vated by the practical importance of such processes. For irfélated processes like, for instance, the photoelectric effect.
stance, electron-positron pair creation with the electron proWVe report results for a wide range of ion charges and photon
duced directly in a bound state of one of the colliding bareenergies. Towards the end, we shall comment briefly on the
ions, so-called bound-free pair production, is expected to becollisional case, where we note that the productioh elec-
come the dominant mechanism for beam loss and luminosit{fons contribute significant probabilities for bound-free pair
limitations in relativistic heavy-ion colliderg2]. production.
Collisions involving ions of high atomic numbers are, in
general, nonperturbative and. a theort_atiqal treat_ment based on Il TOTAL CROSS SECTION
a lowest-order Born approximation is insufficient. For the
process of bound-free pair production at moderately relativ- The total cross section for photon induced bound-free pair
istic impact energies, there has been some controversy as pooduction may be obtained by summing the partial cross
the degree of failure of the Born approximation for the sections for ending up in specific, scattering states, that is,
electron-positron interaction with the “projectile ion(the
latter defined as the ion which does not capture the electron 1 f do( 9, )

[3]. The basic reason why such controversy could build up o== > —_—
20-’}\’m dQ

Y
and survive for an extended period of time is the computa-
tional difficulties involved in solving this collisional problem
accurately. Alternatively, the sum may be taken over angular-

As a background for the collisional problem we examinemomentum eigenstatépartial waveg so that,
in this paper the related process of bound-free pair produc-
tion following photon impact on a bare nucleus. Also this 1
process is highly nonperturbative for high atomic numbers o= 52 2 STRVE (2
— although solely in the interaction with what would be the A JLMm
“target ion” in heavy-ion collisions. Furthermore, the pho-
ton induced process has the obvious advantage of being these equationa and o represent the helicities of the
much easier to treat numerically than the collisional procesgncoming photon and outgoing positron, respectively s
The results obtained for photon impact provide cross secthe magnetic quantum number of the bound electronnd
tions for not too close heavy-ion collisions through applica-L, andM are the angular-momentum quantum numbers of
tion of the Weizsaker-Williams scheme of virtual quanta, the partial wave. Obviouslyg is absent from Eq(2) and
which is perturbative in the projectile charge and, thereby,, L, andM from Eg. (1). Since the Coulomb-Dirac wave
lead to reliable estimates for bound-free pair production fofunctions may only be obtained as a partial-wave expansion,
ion impact at ultrarelativistic energies. the approach{2) is taken in this section.

The process of photon induced bound-free pair production The process of bound-free pair production may be viewed
was recently studied by Aset al.[4], who gave total cross as the excitation of an electron from the negative-energy
sections for production dk electrons. In the present paper continuum to a bound state. Consequently, the partial cross
[5], we shall basically confirm the results of these authorssectionoj y is similar to the usual photoabsorption cross
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section given, for instance, by Bethe and Salpg6drand aZE sis — KTiTIE
Merzbachef7]; introducing the Compton wavelengih. , it p=VEZ-1, p=——, e¥=——— (11
p S+iny
becomes
E
4mla s=k?—a?Z?, Se=r=y.
oam="j—IMIxg. 3 ||

In these equationsy=1/137 is the fine-structure constant,
Here k, denotes the energy of the incoming photon whichand, as in the rest of this paper, the electron mass, the speed
splits among the bound electron and the positron in amountsf light, and# is set to unity.
of E, andE . =ky—E,. The matrix elemenM is given as The wave functions for bound motion around point nuclei
may also be written in the forn(5), but in this case, the

3t Kt radial functions read
M=M\ym= | drip(r)a-ee™ gy u(r), (4
9u(r)=Nprs e Po'

where 5 v is the appropriate negative continuum wave [((n’+s)

function andy, is the wave function of the bound electron. E K F(—n',2s+1,2per)
A. Wave functions CF(1-n’ 25+ 1,2por)], (12)
The wave function of a state characterized by the quan-
tum numbers], L, andM is given by 1_E\12
fo(r =—(— N,rs~le™Pof
ey SO0 o (O=\g) ™
o it (NQyum(D,0) ) (n'+s)
X —k|F(—n’,2s+1,2p,r)
Qym= _24 (LzM—mg,mgL3IM)
ms==1/2 +n'F(1-n',2s+ 1,2p0r)], (13
XYL,M—mS(ﬂ!(b)XmS’ (6)
where
where \ _(2po)s+1/2 (1+ E)F(25+n,+1) )1/2
k=T(J+3), L'=L=1 ford=L=}, (7) P T(2s+1) [4n"I[(n'+8)/E-k](n'+s)/E '(14)
(---]---) is a Clebsch-Gordan coefficient, , a spherical (aZ)? |12
harmonic, andy denotes a Pauli spinor. For actual calcula- E=|1+ m . Po=v1—E? n'=n—|«|,

tions, the explicit expressions for th{&'s given by Greiner (15)
[8] are very convenient.
For point nuclei of charg&Ze, the radial solutions for while s and « are as defined above amddenotes the main
unbound states of enerdy are given by the expressions quantum number. The expressions for the lowest shells are
actually quite simple. For the ground state, for example, we

9.(r)=Ng(2pr)>~* have
X Re{e'%(s+in)e PTF(s+1+i7,2s+1,2pr)}, L 1—s,5\ Y2
@ SN == 0,
S
(16)
fo(r)=N¢ (2pr)s~* whereNj turns out to be
X Im{e'%(s+in)e "P'F(s+1+i72s+1,2pr)}, / 1+s,, |12
No=(2aZ)%s" 12| ————— 17
9 2T (2s15+1)
whereF(a,b,z)=,F(a,b;z) as usual denotes the confluent B. Matrix elements

hypergeometric function and the various parameters and nor-

malization constants are given as In preparation for the numerical work, we now derive

formulas for the matrix elements between bound states and
1/2 IT(s+i7)| free spherical waves. The bound state of endtgys char-
2 (100  acterized by the quantum numbejrsl, and m, while the
I'(2s+1) positron is represented by a negative-energy solution to the
o Dirac equation for the Coulomb potential, characterized by
E) the energyE=—E, =E,—k, and the quantum numbeds
E+1) ° L, andM.

Ngzz(psE<5+ 1)

N¢=—NgSe
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In the following calculation, let us choose the polarization C_JILM
vectore, to correspond to a photon of positive helicity, that

is, A= +. Inserting Eq.(5) in the expression for the matrix V2(j+m)(J—M) j=1+3, J=L+3
element then yieldgx,=+(j+ 3
yieldpieo==(1+2)] V2(j+m)(J+M+1) j=1+3, J=L-3
M=ifd3reik0'r[gkb(r)fK(r)QJﬂmaJ,QJL/M | =v2G=mrnE=M) j=1-% J=L+3%
—V2(j—m+1)(J+M+1) j=I-3, J=L—-3
A, (0000 Q. a9 v2(j—m+1)( )=t :
the angular part may be written as
where
o [ _4m(2k+1) 12
0 2 Lol (21+1)(2L+1)
o= o ol (19

]]|IT-T]MJ dQ Y mo12Ye Mt 12Yko- (26)

In order to do the integrak, is assumed to be in the direc-
tion of thez axis, which allows us to writ&y=kye, and use
the expansion

From the selection rules for the Clebsch-Gordan coefficients
it follows that this matrix element vanishes identically unless
M=m-1, unlesgl —L'|<k=I+L" and unles$+L’ +k is

an even number.

_ = ) For bounds states, the summation ovieiin Eq. (21) may
e'or= kgo i“VAm(2k+1)j(kor) Yio(D,¢), (200 pe performed to yield the following resuld €L + 2):

-1 L
. . . _:L L") — L-1 L+1
wherej, , as usual, denotes a spherical Bessel function. In- M=i"""1V2J+1/1{; )+2L+1|(2,r )i—2L+1|(2,r+ ',
serting this and exchanging the order of integration and sum-
mation enables us to express the matrix element as the fol- m= + L
=712

lowing sum of integrals:

VL(L+ )[I(L+1) (L 1)]

© =1 Lwl
M= 2, ik -199], O I T
k=0
m=—3. (27)
where
The result for bound,, states follows by interchanging
andL’, I, andl,. For boundps, states, the angular integrals
199=Vam(2k+ 1)f0 dr r2ji(Kor) read
1/2 JL’ 1 1 L' K
m— m—
ngb(rm(r)f 40 Qo QunYio, 2 1T DTARKEDCE| L
1 L k
® X , (29
199 = V4m(2k+ 1)f dr r2j,(kor) 0 00
0
; 2 L k
X (N G(T) f dQ Q)0 QumYio (23 155=(=1)™ Y2(2k+1)Cl5/55m . )
-—m+3; m—3 0
The integrals(22) and (23) separate into radial and angular > 2 L k , (29)
parts. We write 0 0 O
I k)_l 10 =12 (24) which may be computed by use of the relations for the 3
i, 9'i,r Bt it

symbols given by Sobel'mal®] together with their symme-

try properties, see also WeissblJtt0]. The actual calcula-

and include the square root in the angular integral. tion would, of course, be the same as for thetate, only
Only a finite amount of the terms in ER1) do, in fact, now we have four possible values of the quantum number

contribute to the sum due to angular selection rules. As am and some slightly more complicateg S8ymbols.

example, consider the integrgl. With the definition The radial integral$22)—(24) may be written as
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199=N; (2p)~ Im{ €'%(s+i7) JO dr rstle Py, (kor)

We will first examinel*, since it turns out to be the
simplest. We introduce an integral representation of the con-
fluent hypergeometric function,

Xgp(r)F(s+1+in,2s+ 1,2’pr)], (30 T'(b) 1
Fab2)= T a) a)f du P H(1-u)* 2 e,
—a)Jo
(k) s—1 i6iari | dr pstla—ipr: (39
157 =Ng(2p) Rel e'°(s+in) [ dr r3 e P (kor)
° in Eq. (37) whereby
Xfp(r)F(s+1+in,2s+ 1,2’pr)], (31 _ I(2s+1) 1 _ .
+ _ _ f du uS+|7](1_u)57|7]71
I'(s+1+in)T'(s—in) Jo
where indexb is used for the bound state; the paramstéas
well as parameterp, », and 6) relates to the continuum % wdr PSSy 1 g (PoHilP(L-20) +kolr) (39)
state. The integral€30) always involve sums of integrals of 0 '

the same type, since all bound-state wave functions are of the

form of a polynomial times a power times an exponential.ypon elementary substitutions, théntegral yields d" func-
Hence, we shall start focusing on the ground-state integralgion [14]

since this will demonstrate all nontrivial aspects of the cal-

culations.
Inserting the ground-state wave functi¢®) in Eq. (30)
above, we obtain

11)=NNo(2p)* "Im{e'*(s+i n)K(s,51.k,aZ,p,ko)},

(32
) - 1/2 " .
19/=—"NgNo| 755°|  (2P)* "Refe(s+in)
XK(s,s15,K,aZ,p,Ko)}, (33

with K defined as
K(s,sb,k,po,p,ko)=f dr rs*sve™ (PotiP) (Kor)
0

XF(s+1+in,2s+1,2pr). (34

Various approaches may be taken in order to evaluate this
integral. The approach to be taken here is similar to the

method of[11] and also used if12] as well as in[13]. It

consists of expressing the spherical Bessel function of the

integrand as a finite sum of exponentials, that is,

k

_ (K+o!

i2)=2 G e
X[(—1kt ez e (39)

Insertion of this expression reduces E84) to

K (k+o)!
K(s,Sp,K,Po,P,Ko) = 20 Lf(k——bb)!ikHL(Zko)(‘“
X[(_l)k+1_[r_+T+], (36)

with the definition
T: _ fwdr rs+sb—1—Le—[p0+i(prk0)]r
0

XF(s+1+in,2s+1,2pr). (37)

~, T'(stsy—)I'(25+1)

+

“T(s+1+inT(s—in)

fldu (1 —u)sTint
0
X{po+i[p(1—2u)+ko]}* 5 *. (40)

If we now rewrite the factor in the integrand involving
po, andky, making use of the simple algebraic fact

L 2pu )
p+Kko—ipo/’
(41)

Poti[p(1—2u)+Ko]=[po+i(p+ko)]

the remaining integral ovar may conveniently be expressed
in terms of the integral representation of {im@ndegeneraje
hypergeometric function

F(a,b;c;z)=,F,(a,b;c;2)

_ I L i e—act
“T@al(c—a ), duyw (1-w

X(1—zu) ™" (42)
Upon comparison, we obviously have

B F(S+Sb_b)
“[poti(ptke) st

T+

2p
p+Kko—ipo/
(43

XF|s+1+ins+s,—t;25+1;

As for I~‘, we will first apply the Kummer transformation
F(a,b,z)=€e’F(b—a,b,—2z) whereby we may write

B [(s+sp—1)
[Po—i(p+ko) ]t
: 2p
XF S—|7],S+Sb—L;23+1;m . (49
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To summarize, the radial integrals for the ground state, of

energy E;=s,=1—(aZ)?, are given by Egs(32) and
(33), with K given by Egs(36) and(43)—(44); see alsd15].
Let us now turn to the shell. For the p,, state of

energyEsp, = s,/2=\1—(aZ/2)? we get

Ig.lfr): NfN2p3,2(2p)s_l

xIm{e'’(s+in)K(s,s,,k,aZl2,p,Ky)}, (45
1_E2p 1/2
k) _ 312 —
2=\ 5 —1) MNoNans 2P
P32
X Re{e'’(s+in)K(s,s,,k,aZl2,p,ky)}.  (46)

The integrals corresponding to the and 2p,, states, which

have the same enerd,= Eop,,= V(1+s;)/2, are slightly
more complicated. By introduction of the quantities

Kl: K(S!Sllk1p01p!k0)1 K2: K(Sasl+ 11k1p01p1k0)1

(47)
where nowpy=+(1—5s,)/2, we get for the 2 state

190 =NiN,g(2p)s 2

is ) 2po
X Im{ e'¥(s+in) 2E25K1—ﬁr<2 , (48
2s

1/2
NgNZS(Zp)S_l

EZS

(0= _ 2s
2 E,s+1

r

(2E,5t+2)K 4 —

2pg
2E,—1 KZH'

(49

XRe[ e(s+in)

And, very similarly, for 204/,

1#0=NiNgp (2p)*~*

X |m[e‘5(s+i77)

2, 2K, 2P0 g
( 2py)n ) 1 2E2p1/2+1 2 ’

(50
1— E2p 1/2
(k) — _ 1/2 s—1
|2,r ( E2P1/2+ 1) NgN2p1,2(2p)
i . 2po
XR% elé(S+|77) 2E2p1/2K1—mK2 ]
P12

(51)
To summarize, the radial integrals for theshell are given

by Egs.(45—(51) with K again given by Eq(36) and Egs.
(43) and (44).

C. Numerical results
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FIG. 1. Total cross section for pair production with the electron
bound in the % state as a function of photon energy for nuclear
charge numberg of 1 (upper full-drawn curvg 8 (dotted, 26
(short dashes 55 (dotted-dashed 79 (triple-dotted-dashed 82
(long dashes and 92(lower full-drawn curve. Cross sections are
scaled withZ®, the unit on the ordinate is I0° cm?, and the
photon energy is given in units afc?, the electron rest energy. The
uppermost curvedotted-dashedcorresponds to the Born result
(52).

Sauter’s Born-approximation result for the photoelectric ef-
fect[16] by performing appropriate substitutions. It reads

3
og= 477')\%&(0[2)5k—8

L[4, EAE-2) 1
3T TE 1 E.pm

E++p)
Ei—p

(52

where E, as usual denotes the positron energyis the
positron momentum, ankl, the photon momenturtthat is,
the photon energy In the extreme high-energy limit, Eq.
(52) reduces to the so-called Sauter cross section

:47Ta( aZ)® \2
ko ©

which also applies for the photoelectric effect. The Born re-
sults (52) and (53) are valid foraZ<1 and show a scaling
with Z5. Hence we expect a moderate variation with nuclear
charge if we divide exact cross sections with

Figure 1 shows th&-shell cross section scaled wit? as
a function of photon energy for seven elements together with
the Born resul{52). The curves in Fig. 1 all show a peak at
low photon energies followed by a decrease which ap-
proaches the asymptotickl/ dependence at high energies,

(53

0o

The perturbation result for the total cross section for paircf. Eq.(53). The shapes for differeit are rather similar, but
production with capture to thié shell may be obtained from the peaking appears at lower energies for higher charges. The
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TABLE I. Comparison between the high-energy limits of
ola for the K shell extrapolated from the present work and those
given by Pratf17], the high-energy approximatidf5) obtained by
Aste et al. [4], and the modified Hall formul#56). The numbers
marked with an asterisk are extrapolated from the data given by
Pratt, Ron, and Tsen@2].

(<]

B Z Present Pratt (55) (56)
92 0.196 0.203 0.182 0.175
82 0.216 0.223 0.197 0.201
79 0.222 0.228 0.203 0.209
55 0.293 0.3106 0.271 0.305
26 0.518 0.532 0.4875 0.529
8 0.798 0.793 0.784 0.805

0.971 0.969 0.972

FIG. 2. Ratio of the exact cross sections displayed in Fig. 1 to
the Sauter cross sectiof®3). The charge numbers and symbols
used are the same as in Fig. 1.

[21] and those given if22] may well be caused by inaccu-
racies in the original calculations of Pratt7]; obviously, a

[t has happened in the realm of electronic computers since
: : 1960, and an attempt to repeat the computation of the exact
sponding to a sloweZ dependence of the cross section thanhigh-energy limit might not be superfluous, especially since

. 5 .
theltperturgatlve:_ dsﬁ?“tng' threshold. bound-f : the method used by Pratt did not permit him to perform the
[may be noted that near threshold, bound-iree pair prog, - jations in the lovz limit. It may be noted, that for
duction dominates over free-free pair production. For the

o . ) energies beyond ca. 20 electron masses, there is a good
case 0z=92, this holds tr_ue for nearly all of the first energy greement between the present results and those of a modi-
unit beyond threshold. Right after curves cross, the boun

free cross section goes through its maximum while the crosP'I: sdul?(ogg) %gplrhoemrr;rsjar\ntlgrr;é;Ik;ta:;gfgnt;)é(r;; ltiplying the Born

section for production of free pairs continues to increase Figure 3 illustrates the distribution of the cross section

Ste?ﬁ:ey‘de endence &-shell cross sections on enerav and over angular momentd of the positron. With increasing
P 9y energy, the number of partial waves that contribute to the

char_ge is further iII_ustra‘Fed in Fig. 2, which shows the CTOSSotal cross section gets higher; on the figure we show the
sections of Fig. 1 in units of the Sauter cross sectfad). ontributions for J<100, but for a positron of energy

Plotted in this way, each curve tends to a constant at hig Iy . —
: X S 5mc it is actually necessary to include the contributions up
energies so that, following Prdtt7] and Milstein and Stra- ~ . .
to, roughly, J=200 in order to get a sufficiently accurate

khovenko[18], we may write the high-energy cross SeCtlonresult. A very conspicuous feature of the distribution of the

absolute values for unit nuclear charge are close to the Bor,
result (52), but asZ increases, values become lower corre-

as cross section on the angular-momentum quantum numbers at
ox=0of(2), ko—. (54) ~ moderate and high energies is the sharp peak atllofol-
From the plot we see thdi(Z) is a decreasing function of 0.20 ; . .

Z, and we further note that the high-energy limit is essen-
tially reached at the maximum energy display@d MeV).

Aste et al. [4] have suggested a “purely heuristic” formula 0.15 s
for f(2),
1 aZz\?7? { 0.10 .
f(2)= §+ a (55 S

Even though our results are in good agreement with those of ~ 0.05 *
[4], this formula turns out to be somewhat below the mark
(5—10%. The numerical high-energy results of Prgtf],
obtained in studies of the photoelectric effect, are in better
agreement with the present calculations. Another useful ap-
proximation formula is the modified Hall formu[d.7]

0.00L

100

1 FIG. 3. Partial cross sections for pair production on a bare lead
o=0g(azZ)*e 2945 "2(1-47aZ/15), (56)  nucleus with the electron bound in the $tate. The contributions
o; from the individual partial waves of total angular momentum
where ¢=s,—1=\1—(aZ)*~1 (=-a°Z%2); see also Jare shown in units of the total cross section. The full-draw histo-
[19]. The various results fof(Z) are compared in Table I. gram corresponds to a positron energy ofni28, while the dashed
The formulag55) and(56) are seen to be of nearly the same is for 5mc2. For comparison, the dotted histogram displays the re-
quality. The discrepancies between our high-energy limitsult for Z=1 at the higher energy.
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0.08] ] 0.04
0.06 -
2 0.04 8 0.021
[} e}
0.02- §
0.001 ‘ ‘ J ] 0.00 .
0 20 40 0 20 40
Ko Ko

FIG. 4. Cross sections for pair production with capture to the FIG. 5. Cross sections for pair production with capture to the
2s,, shell as a function of photon energy in units wic® for 2py, shell as a function of photon energy in units wic® for
Z=92 (full curve), 82 (dotted, and 79(dasheql Z=92 (full curve), 82 (dotted, and 79(dashedl

lowed by a decrease and a new increase producing a locgdose presented if24]; for the 2p,, state, which at lowz

maximum at highed. The peak at low] is the contribution  actually makes the smallest contribution of the two, the
from the radial integral; containing the large components agreement is even very close.

of the wave functions, whereas the local maximum at hlgh Figure 7 disp|ays the ratios of cross sections to the
J stems from the integrall, containing the small compo- K-shell cross section for the thréestates as well as for the

nents. In the lowZ limit the contribution froml, tends to  entire L shell for the three heavy targets selected in Figs.
vanish, and, indeed, the local maximum at higls missing  4—6. At energies beyond 5 units, all ratios are essentially

on the histogram displayed in the figure 1. constant. The € curves all saturate at a level close to the
As proved, e.g., by Praf23], to first order inaZ the  value 1/8. The R, curves, on the other hand, show signifi-
ns-shell cross sections obey a scaling law, so that cantZ dependence, even faster than 2/éZ>=Z? predic-

tion of the Born approximation, whereas thes2 ratios only
depend weakly oZ. Due to theZ dependence of thep?,,
results, also the ratio for the entite shell shows somé&
dependence with asymptotic ratios ranging from 18% to 21%
Furthermore, Gavrila’s second-order Born approximation forfor the three selected heavy targétgain to be compared
the 2s state yielded identically 1/8 of his second-orderwith 12.5% in the lowZ limit).

K-shell cross sectiof24]. Calculations by Pratt showed that  The high-energy limit for the_-shell cross sections is
in the high-energy limit, the~3 scaling is very close to the most easily obtained by applying the high-energy values for
exact result not only at low charge numbers but in general ahe shell ratios and Eq$54) and (53) for the K-shell cross

all values ofZ. The 2p states, on the other hand, have quitesection withf(Z) taking values according to Table I. The
insignificant cross sections at low target charges while ashell ratios obtained in our calculation are displayed in Table
high target charges they will be of the same order of magnitl and compared to results obtained by Pfag].

tude as the 2 cross sectiongthough still smallex. In the Total cross sections for bound-free pair production by
Born approximation, that is, to lowest order #Z, cross
sections forp states are expected to increase in proportion to
Z" as compared t@° for s states, cf[24]. The result is that
the cross section for bound-free pair production with capture
to theL shell is approximately 12.5% of thi€-shell cross .
section for low target charges, where the Born approximation g gg4 -
is valid, and about 20% for high target charges. The presentc
calculations show that this prediction, which was originally g
based on Pratt’s high-energy calculations, is valid at practi- '
cally all energies away from threshold. Figures 4 and 5 show  ¢.002 |
the contributions from the 2 states and the 2, states for -
three heavy elements. For these higltargets contributions

from the 2p,,, states are about half of those from the 2

states. In Fig. 6, we show the lowepz, cross sections for 0.000
the same three elements. By comparing Figs. 5 and 6 to Fig.

4, the increasing importance pfstates with increasing is

evident. We also mention that fa&=1, where thep-state FIG. 6. Cross sections for pair production with capture to the
contribution to the total -shell cross section is very small, 2p,, shell as a function of photon energy in units wfc® for
our results for the two |2 states are in good agreement with Z=92 (full curve), 82 (dotted, and 79(dashed

Ons= 30K - (57

0.006

40
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] wherey;  are the partial waves listed in Sec. Il A addis
. the Coulomb phase shift, given by

R e o o 2s o

8,=06+(L+1-5) 5 arg{I'(s+in)}. (59

To describe an outgoing positron of momentprand helic-
ity o we make the substitutions— —p ando— — o in Eq.
(58) and select the incoming wave; that is, we consider the

0.05 . ] state
N 2py: |
L s
_____ _ v 3 .
\pr=4qr(— ite 1o

: /m~'~'*'“'“"-"*-"“-*--*"*-=-H-~'=—"*= 2pssp 2Ep itm
0.00 L L { I L

0 20 40 X(L3(M+30)30|L3IM)

E, .
XYE Mt ar2(—=P) aim(r). (60)

FIG. 7. Shell ratios. The ratios of cross sections for pair produc- . . .
tion with capture into the individudl subshells to the cross section The differential cross section then reads
for capture into theK shell are shown as functions of positron
energy in units ofmc® for three different elementsz=92 (full — = |
curve, 82 (dotted, and 79(dashedl The three close-lying curves at dQ 2wk

the bottom of the figure display results for th@s2 state, then . .
follow the three curves for thef®,, state, the close packed group of where E, denotes the energy of the emitted positron and

curves for the 2 state and, at the top of the figure, the sum of the Eb the bound-state energy. The matrix element is given as
partial ratios.

do  apE, —

2, (61)

l\7|=J dPryf(n)a-eeo v
high-energy photons where the electron ends up irvMher

any higher shell are given ifil8]. According to[18], the o |12 s
contribution fromM and higher shells amounts to approxi- =4m 2E.p JLEM 1me "«
mately 60% of the.-shell contribution for all charge num-
bers. X(L3(M+30)30|L3IM)
XY mtar2( = P)Mysim, (62)

Ill. DIFFERENTIAL CROSS SECTIONS

- . . where M, ; v are the partial-wave matrix elements intro-
In order to obtain differential cross sections, the CON-4ced in Sec. I

tinuum state of an electron is represented by a scattering state
W= corresponding to an incominfputgoing plane wave
plus outgoing(incoming spherical waves. Relativistic Cou-
lomb scattering states are only available in a partial-wave Figure 8 displays the differential cross section for pair
expansion. This is given by Ro$85] and may be written production with the produced electron bound in #eshell

A. Numerical results

TABLE Il. High-energy limits of the ratios of cross sections for the varidusubshells to the cross
section for theK shell. The results marked with supersciipare the high-energy results listed[28], except
for the casez=1, where the high-energy limit of Gavrila’s Born approximation is uggl. As in Table I,
the asterisk indicates that results are extrapolated from the data giy28|in

z 2s 2sP 2Py, 2p, 2pzp, 2p5,

92 0.129 0.130 0.0598 0.0576 0.0201 0.0212
82 0.128 0.128 0.0385 0.0374 0.0178 0.0179
79 0.127 0.127 0.0340 0.0331 0.0171 0.0165

1 0.125 0.125 1.2410°° 1.25x10°° 4.24x10°° 4.44x10°8
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FIG. 8. Angular distribution of positrons at an energy of FIG. 10. Angular distribution of positrons at an energy of
1.5m¢? for pair production withK-shell capture at targets of charge 1.5mc? for pair production withL-shell capture. The upper full-
numbers foZ=1 (full curve), 8 (dotted, 26 (dashed, 55 (chained, drawn curve is for production ofs2electrons on a target nucleus
and 92(full, with a maximum in the forward directionThe differ-  with Z=92, the close-lying dotted curve is 1/8 times the corre-
ential cross sections are scaled By and the ordinate is given in spondingK-shell result, cf. Fig. 8. The three lower curves are for
units of 10 %6 cm? per steradian. production of electrons in thepz,, state around nuclei with charge

numbers numbers foZ=92 (full curve), 82 (dotted, and 79

. . . dashedl The unit on the ordinate is IT¢* cm? per steradian.
and the positron emitted with a total energy ofrhé for (dashedl The unit on the ordinate is cm™ per steradian

five different target elements. At low target charges the dif-

ferential cross section vanishes in the forward direction. Thigingle-quantum annihilation a maximum is encountered in
is in agreement with the prediction of the Born approxima-the forward direction at higiz [27] as we find it for the
tion; see alsd26]. At high charges, on the other hand, the bound-free pair production.

angular distributions show a maximum in the forward direc- Figure 9 displays the angular distributions at higher ener-
tion. The transition from the lovi- to the highZ behavior ~ gies for a heavy target element as well as for unit nuclear
takes place already at moderate charge numbersZ fe8, charge. With the abscissa chosen as the product of positron
the value for forward emission is distinct from zero and at€nergy and emission angle, the curves are all confined within
Z=26 the global maximum is at zero angle. It may be notec® féew units corresponding to a scaling of characteristic
that at lowZ, but not moderate and high, our angular angles with the inverse of the positron enef§y . When
distribution is quite similar to that of thi&-shell photoelec- this result is combined with the asymptotid&l/ dependence
tric effect, which for any charge number has a local mini-Of the total cross section it is obvious, that the differential

mum in the forward directiofil2]. On the other hand, for Cross sections scale roughly wih, . Accordingly, as ordi-
nate in Fig. 9 we have used differential cross section divided

by energy as well as bg®°. Plotted in this way, the shapes of
the curves for a given element are similar at all energies and
the variation in absolute values is moderate.

Figure 10 displays the differential cross section for pro-
duction of the electron in thes2and 2,,, states at a low
) energy. The result for thes2state, which is shown for
g Z=92, is close to one-eighth of the correspondkeshell
] result, which is also shown. The form of the angular distri-
] butions for the P4/, state, shown for three different heavy
] elements, is quite similar to that of tisestate, though a little
broader, but th& dependence is stronger. This similarity in
shapes between tleand p distributions does not appear at
low charge numbers. AL=1, the result for the 2,,, state is
still at maximum in the forward direction, see al§p4],
while the result for thes state essentially vanishes here. It
may be noted, however, that tleresults do not exactly
vanish in the forward direction for lowZ, and due to the
suppression of th@ results at all angles for loviZ, the s

0.25¢ T '

0.20 .

(2°6)"'do/dQ (nanobarn)

FIG. 9. Angular distribution of positrons at various energies for
pair production withK-shell capture at targets with=92 (curves

peaking at zero angleendZ=1 (curves peaking foE, # near 1. . o
The abscissa is the product of positron emission en&rgyand results still superseed theresults for forward emission.

angle 6, the ordinate is the differential cross section divided by ~ Figure 11 shows the differential cross section for produc-
E. Z5 units aremc for E. , radians forg, and 103 cm? per  tion of 2py, electrons at a high energy for three higttar-
steradian for the scaled differential cross section. The positron ergets as well as foZ=1. The result for the & state is not
ergies are 2H ¢ (full curve), 15mc? (dotted, 10mc® (dashedl and ~ shown as it is again close to one-eighth of Kishell result
5mc? (chained. for all Z.
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0.0307 ; . ] degrees forE,=1.5, and for 9 about 10 degrees for
L ] E, =10. This is in agreement with the Born approximation
—~ 0.025¢ ] according to which the polarization transfer is complete at an
5 L ] angle given approximately b28]
€ 0.020F 5
c 0015y ] Indeed, this formula predicts that the complete polarization
% 0010k ] transfer should occur at=51.5 degrees foE, =1.5, and
O . ] for 9=9.3 degrees foE =10. This may be compared to
N 50051 ] our values of 52.0 and 9.3 degrees, respectively. Hence, we
{ note that our predictions reproduce those of the Born ap-
0.000¢ ] proximation in the lowZ limit. The better agreement at the
10 15 higher energy reflects the well-known fact that the accuracy
8 (degree) of the Born approximation increases with energy. Further-

FIG. 11. Angular distribution of positrons at an energy of more, we note that the absence of complete polarization
10m¢ for pair production with capture to thepg, state. The dif-  transfer at intermediate angles for higtagain demonstrates
ferential cross section is divided %’ and shown for nuclear the complete breakdown of the Born approximation at high
charges of Z=92 (lower full-drawn curvg, 82 (dotted, 79 target charges.

(dashegl and 1(upper full-drawn curve The unit on the ordinate is As to theL shell, we mention that the polarization func-

107% cm? per steradian. tion for the 2py,, state is completely different from the
polarizations shown in Fig. 12 for all charge numbers. For
B. Polarization effects Z=1 the complete polarization transfer observed at a definite

If the incoming photon is polarized so that it is assumedintérmediate angle for thi shell is replaced by a complete
to have, say, circular polarization corresponding to positivePolarization reversalcomplete spin flip And, again, the
helicity, the created positrons will be more or less polarizedrsult for high charge numbers is completely different from
The degree of polarization is measured by the polarizatiofhat pertaining to low values df.

function defined as
IV. REMARKS ON HEAVY ION IMPACT

:da(g_l) do(o= 1)_ (63) The photo cross sections obtained in Sec. Il may be ap-

do(o=1)+do(o=-1) plied in a Weizseker-Williams construction to estimate the

contribution to bound-free pair production in distant heavy-

WhenP=1 (respectively,— 1), the emitted positron is com- ion collisions. The relativistic projectile ion of atomic num-
pletely polarized in the direction of motioimespectively, in  berZ, is assumed to move on a rectiliniar path at a constant
the direction opposite the direction of motjorBecause of velocity v throughout the collision and the electromagnetic
the angular-momentum selection rules, positrons emitted ifield which it generates is ascribed to an equivalent bunch of
the forward and backward directions are always completelyyhotons which then interacts with the target nucleus through
polarized. Figure 12 displays the polarization function for athe previously determined photo cross sections, [28)],
light and a heavy element. It may be noted, that for a hydrof30]. This leads to a cross section for ion impact of
gen target, the polarization becomes completejfabout 50

P9

20[
1.0 L
= 15 .
0.5 . 5 [
) i
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S 0.0 — . i
o 2
Nb [
s 5 ]
-0.5 i
-1.0 ‘ L L ] 0 2000 4000
0 50 100 150 200 Y

0 (degree) FIG. 13. Distant-collision contribution to the cross section for

FIG. 12. Polarization. The full-drawn curve displays the polar- pair production with capture to thi€ shell for ion impact withy
ization function(63) for production ofK electrons for unit nuclear values up to 3400. The cross section has been divided with the
charge and positron emission at an endfgyof 1.5mc?, the dotted  square of the projectile charge number and the ordinate is given in
curve shows the same result #8=1 andE_ =10, the dashed is for units of 102" cm?. The lower curve corresponds to a target charge
Z=92 andE, =1.5, while the chained curve displays the polariza- number of 79, the central curve to 82 while the upper curve corre-
tion function forZ=92 andE, =10. sponds taZ=92.
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TABLE Ill. Distant-collision contribution to the cross section for pair production for bare gold ions
incident on a bare uranium nucleus. The produced electron ends up K 8tell of the hydrogenlike
uranium system. Cross sections are given in barn. The first column identifies the impact kinetic energy given
in GeV/amu, the next two give our results fof,,,=2 andb,,;,=1, the fourth column compares to the results
of Aste et al. [4], and the last two compares to the Born approximation resulf82fand[33]. The Born
results for the total cross section are taken fi{@®] for the two lower energies and estimated for the higher
by scaling the resultrioa=14.3 Iny—31 given in[33] for impact of lead on lead witlZZ°f(Z), where
f(2) is defined by Eq(54) and listed in Table I. The Born results fo2 are estimated frorf82] and[33]
by numerical integration of data presented in a figure, respectively, by scaling a fitting formula with

Z57%4(2).
Energy Presenty,=2 Presentb,,=1 Asteet al; by,,=1 ohat ol
10 5.58 13.1 - 8 15
100 39.8 54.8 54.4 13 50
20.000 165 182 185 22 167
§ d19(w)/d(w) flects the radius of the correspondikgshells, that is, ne-
O-i(or::J do U(w)—w . (65  glecting minor variations between the three target ions, we

chooseb,,;;=2. It should be noted, that this values is twice
where superscriptd) signifies distant collisions and(w) is that chosen by most other authors who select the Compton

the cross section for photon impact. The photon intensityVavelength foy, irrespectively of the actual width of the
spectrum is given ak0] electronical orbit. In Fig. 13 we show the distant-collision

contribution to the pair production cross section as a function

di@ 20[2’2) 1 of th_e impact_y obtgined by applying th&-shell photo cross
—_ = xKo(x)Kl(x)——vzxz[K'f(x)—Ké(x)] , sections derived in Sec. Il in the formul465) and (66)
do v 2 above(for »>50 we actually applied the Born resyf2)

multiplied by the factorf(Z)).
x= (66) In Tablellll we compare the resglts of the present work to
yu ' those obtained ih4] also by the virtual photon method as
well as to other calculations, as reported[82] and [33],
whereK, and K; denote modified Bessel functions of the which are perturbative in the projectile field but based on
second kind and the quantity is the usual Lorentz factor exact Coulomb waves for the target states. The question of
y=1/J/1—vZ. The total spectruni6) has been obtained by higher-order couplings to the projectile is not to be addressed
integrating the spectrum pertaining to a given impact paramhere, see, e.g[33] for an investigation based on a coupled
eterb over impact parameters beyond the minimum valuechannels approach or the two papers mentiond@]ifior an
bmin- The latter quantity should be chosen such that beyonéxamination based on a direct numerical solution of the time-
bmin. the interaction between the projectile ion and the targetlependent one-electron Dirac equation. For the sake of the
system, defined here to be the ion which ends up dressembmparison, we include results obtained with our photo cross
with an electron, is perturbative. Furthermore, the very consections forb,,;;=1. We note that with the latter choice, our
cept of a well-defined impact parameter to the target systemesults essentially reproduce thosd 4ffand that, by chance,
demands thab be in excess of the extension of the struckthe results obtained by the choibg,,=1 essentially equal
system. As for the case of inner-shell ionization, this impliesthe sum of our results fob,,,=2 and an estimate of the
thatb,,, cannot be smaller than the radius of the consideredontribution for close collisions. Furthermore, the Born re-
shell, cf.[29]. The contribution from close collisions has to sult for the distant collisions, obtained by taking the differ-
be estimated by other meal8l]. However, at high energies, ence between the last two columns in Table I, is close to
the close-collision contribution is of minor importance, asour result forb,,;,=2 at all three energies.
the total cross section is dominated by the distant-collision It may be noted, that in view of the shell ratios displayed
contribution. in Fig. 7 ion-induced bound-free pair production is increased
As an illustration, we consider charged particle impact onby roughly 20% beyond the values displayed in Fig. 13 and
three different heavy ions correspondingzZovalues of 79, Table Ill when production of. electrons is included. Inclu-
82, and 92. For production &f-shell electrons we choose as sion of all shells beyond thie shell probably contributes an
minimum impact parameter a length which essentially re-additional 10%, see also the discussion at the end of Sec. Il.

[1] See, for instance, the following reviews and references therein:  Report BNL 52195, 198%unpublished

C. A. Berturlani and G. Baur, Phys. Rep63 299 (1988; J.

Eichler,ibid. 193 167(1990; J. Eichler and W. E. Meyerhof,
Relativistic Atomic Collisions(North-Holland, Amsterdam,

1995.

[2] See, for instance, Brookhaven National Laboratory, Formal

[3] See, for instance, K. Momberger, A. Belkacem, and A. H.
Strensen, Europhys. Let82, 401(1995 and Phys. Rev. A3,
1605(1996.

[4] A. Aste, K. Hencken, D. Trautmann, and G. Baur, Phys. Rev.
A 50, 3980(1994.



55

PAIR CREATION WITH BOUND ELECTRON F@® . ..

413

[5] A more detailed write-up of the work presented is currently [22] R. H. Pratt, A. Ron, and H. K. Tseng, Rev. Mod. PH5,. 273

available on the World Wide Web on the address: http://

www.dfi.aau.dks ahs/agger_thesis.ps

[6] H. A. Bethe and E. E. SalpeteQuantum Mechanics of One-
and Two-Electron Atom&Springer, Berlin, 19511

[7] E. Merzbacher,Quantum MechanicsWiley, New York,
1971).

[8] W. Greiner,Relativistic Quantum Mechanics — Wave Equa-

tions (Springer, Berlin, 1990
[9] I. I. Sobel’'man, Atomic Spectra and Radiative Transitions

2nd ed.(Springer, Berlin, 1992

[10] M. Weissbluth,Atoms and MoleculegAcademic, San Diego,
1978.

[11] I. @verbh K. J. Mork, and H. Olsen, Phys. Rel75 443
(1968.

[12] W. R. Alling and W. R. Johnson, Phys. Re%39 A1050
(19695.

[13] W. R. Johnson, D. J. Buss, and C. O. Carroll, Phys. R&%,
A1232(1964.

[14] One might look one more time on the integral in E89) and
note that this integral is only convergensit s,— ¢<0. If not,
it is divergent. As a matter of fact, this condition is not fulfilled
for all the integrals appearing in the su6). The divergence
is artificial and introduced by the expansi@b). This is also
discussed by @erbg Arkiv for Det Fys. Seminar Trondhei®
(1970, and by Alling and Johnsofl2]. The solution is to
multiply the integrand by a factar™, m being a real number
chosen large enough for the integral to exist: after timeig set
equal to zero.

[15] As Skensen and Belkacem, Phys. Rev48, 81 (1994, we

(1973.

[23] R. H. Pratt, Phys. Rev119 1619(1960.

[24] M. Gavrila, Phys. Rev124, 1132(1961).

[25] M. E. Rose,Relativistic Electron TheoryWiley, New York,
1961).

[26] It may be noted that, for production of free pairs, the Born
approximation gives a maximum in the forward direction, cf.
Heitler [20]. For the related processes of the photoelectric ef-
fect and bremsstrahlung, a similar situation is encountered
with the Born approximation yielding a zero in the forward
direction for the former process but a maximum for the latter.
This asymmetry of the Born results for the bound-free and
free-free processes has caused some concern over the years.
For instance, Fano, McVoy and Albers, Phys. REl6, 1147
(1959, tried to apply a detailed balance argument to show that
the photoelectric effect must have the same angular distribu-
tion as bremsstrahlung if the final-state electron momentum is
equivalent to that of the ground state, hence, they argued, the
first Born approximation must be invalid. However, this argu-
ment does not hold: Gavrila’s second-order Born approxima-
tion also vanishes in the forward direction, 24] [note that
the author erroneously states the contrary in Phys. R&S8.

514 (1959], and the present exact calculations also give re-
sults in good agreement with the Born approximation.

[27] W. R. Johnson, Phys. Re%59, 61 (1967).

[28] H. Olsen, Springer Tracts Mod. Phy$4, 83 (1968.

[29] E. J. Williams, Kgl. Dan. Vidsk. Selsk. Mat. Fys. Medd. XIlI,
No. 4 (1935.

[30] J. D. Jackson(Classical ElectrodynamicéWViley, New York,
1975.

might arrive at the very same result by using, not the integral

representation for the confluent hypergeometric function, buf31] In order to estimate the close-collision contribution, one could

the series expansion. This would lead to the same result, with
the hypergeometric function expressed by the Gauss series.
The present approach is more general, however, since it is
immediately valid in the cas@p/(p+ko+ipg)|>1, where

the Gauss series fails to converge. This makes no difference at
all for the calculations considered in the present work, but for
calculations involving the photoelectric effect the Gauss series
would be inapplicable. Indeed, the only reason for introducing
the Kummer transformation in E¢44) was that this step gives

the expressions a form that enables us to use the Gauss series.

be tempted to apply the so-called sudden-collision approxima-
tion; for the latter see, e.g., K. Adler and Aa. Winther, Kgl.
Dan. Vidsk. Selsk. Mat. Fys. Medd. XXXII, No. @960, and

J. Eichler, Phys. Rev. A5, 1856 (1977. This implies an
evaluation of matrix elements between initial and final states
of the operator expf), where x is the time integral of the
perturbing potential. However, it should be realized that two
approximations are applied to reach this result. The calculation
is performed in the interaction representation. First, in an ex-
pansion involving commutators of the interaction potential at

[16] F. Sauter, Ann. PhygLeipzig) 11, 454 (1931.

[17] R. H. Pratt, Phys. Re\117, 1017(1960. ]

[18] A. I. Milstein and V. M. Strakhovenko, Zh. Ksp. Teor. Fiz.
103 1584(1993; [JETP76, 775(1993].

[19] The original formula published by Hall, Rev. Mod. Phy;.

358 (1936, is not a good approximation — despite so stated
by various authors including Heitler in the discussion of the

photoelectric effect in his book, cf20].
[20] W. Heitler, The Quantum Theory of Radiatidiover, New
York, 1984.

different times, only the lowest-order nonvanishing term is re-
tained. Second, in the remaining term the usual Stihger
representation is used for the potential rather than the interac-
tion representation. While the first approximation is valid due
to the rapid variation of the electromagnetic field of the rela-
tivistic projectile, the second is highly questionable. Essen-
tially, the second approximation corresponds to neglect of a
phase factor which varies over distances of ordeiE,+ E)

and this length is certainly not large compared to the extent of
the bound state.

[21] In order to obtain an early convergence with energy, our val-{32] U. Becker, N. Gra, and W. Scheid, J. Phys. B0, 2075

ues off(Z) are actually determined as the high-energy limit of

(1987.

the ratio of the numerically determined cross section to Eq[33] A. J. Baltz, M. J. Rhoades-Brown, and J. Weneser, Phys. Rev.

(52) rather than to Eq(53).

A 50, 4842(1994.



