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Pair creation with bound electron for photon impact on bare heavy nuclei

Carsten K. Agger and Allan H. So”rensen
Institute of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark

~Received 14 May 1996!

In this paper we present numerical calculations for the process of bound-free electron-positron pair produc-
tion following photon impact on bare nuclei. The calculations are based on exact Coulomb waves. We include
total as well as differential cross sections for production of bothK andL electrons for a wide range of photon
energies and nuclear charge numbers. Significant deviations from lowest-order Born theory appear for mod-
erate and high charge numbers in both the total cross section and, most dramatically, in the angular distribu-
tions of the emitted positrons. Our results for totalK-shell cross sections for photon impact as well as for ion
impact, in the latter case as estimated by the virtual photon method, basically confirm those of Asteet al.
@Phys. Rev. A50, 3980~1994!#. However, we note that by inclusion ofL-electron production, the cross section
for the ion-induced process is increased by approximately 20% for heavy elements.@S1050-2947~97!05701-6#

PACS number~s!: 34.90.1q, 32.90.1a, 32.80.Fb, 13.40.2f
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I. INTRODUCTION

In recent years, a large effort has been devoted to
study of atomic physics processes in relativistic heavy-
collisions @1#. In part, these investigations have been mo
vated by the practical importance of such processes. Fo
stance, electron-positron pair creation with the electron p
duced directly in a bound state of one of the colliding ba
ions, so-called bound-free pair production, is expected to
come the dominant mechanism for beam loss and lumino
limitations in relativistic heavy-ion colliders@2#.

Collisions involving ions of high atomic numbers are,
general, nonperturbative and a theoretical treatment base
a lowest-order Born approximation is insufficient. For t
process of bound-free pair production at moderately rela
istic impact energies, there has been some controversy
the degree of failure of the Born approximation for t
electron-positron interaction with the ‘‘projectile ion’’~the
latter defined as the ion which does not capture the elect!
@3#. The basic reason why such controversy could build
and survive for an extended period of time is the compu
tional difficulties involved in solving this collisional problem
accurately.

As a background for the collisional problem we exami
in this paper the related process of bound-free pair prod
tion following photon impact on a bare nucleus. Also th
process is highly nonperturbative for high atomic numb
— although solely in the interaction with what would be t
‘‘target ion’’ in heavy-ion collisions. Furthermore, the pho
ton induced process has the obvious advantage of b
much easier to treat numerically than the collisional proce
The results obtained for photon impact provide cross s
tions for not too close heavy-ion collisions through applic
tion of the Weizsa¨cker-Williams scheme of virtual quanta
which is perturbative in the projectile charge and, there
lead to reliable estimates for bound-free pair production
ion impact at ultrarelativistic energies.

The process of photon induced bound-free pair produc
was recently studied by Asteet al. @4#, who gave total cross
sections for production ofK electrons. In the present pap
@5#, we shall basically confirm the results of these autho
551050-2947/97/55~1!/402~12!/$10.00
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Furthermore, we shall discuss cross sections for produc
of L electrons, dependence on the positron emission a
for both shells and polarization effects. Throughout, we co
pare with results obtained in the Born approximation as w
as with more accurate results obtained by other authors
related processes like, for instance, the photoelectric eff
We report results for a wide range of ion charges and pho
energies. Towards the end, we shall comment briefly on
collisional case, where we note that the production ofL elec-
trons contribute significant probabilities for bound-free p
production.

II. TOTAL CROSS SECTION

The total cross section for photon induced bound-free p
production may be obtained by summing the partial cr
sections for ending up in specific, scattering states, that

s5
1

2 (
s,l,m

E dV
ds~q,f!

dV
. ~1!

Alternatively, the sum may be taken over angula
momentum eigenstates~partial waves!, so that,

s5
1

2(l
(

JLMm
sJLM . ~2!

In these equationsl and s represent the helicities of th
incoming photon and outgoing positron, respectively,m is
the magnetic quantum number of the bound electron anJ,
L, andM are the angular-momentum quantum numbers
the partial wave. Obviously,s is absent from Eq.~2! and
J, L, andM from Eq. ~1!. Since the Coulomb-Dirac wave
functions may only be obtained as a partial-wave expans
the approach~2! is taken in this section.

The process of bound-free pair production may be view
as the excitation of an electron from the negative-ene
continuum to a bound state. Consequently, the partial c
sectionsJLM is similar to the usual photoabsorption cro
402 © 1997 The American Physical Society
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55 403PAIR CREATION WITH BOUND ELECTRON FOR . . .
section given, for instance, by Bethe and Salpeter@6# and
Merzbacher@7#; introducing the Compton wavelengthlC , it
becomes

sJLM5
4p2a

k0
uM u2lC

2 . ~3!

Here k0 denotes the energy of the incoming photon wh
splits among the bound electron and the positron in amo
of Eb andE15k02Eb . The matrix elementM is given as

M5MlJLM5E d3rcb
†~r !a•ele

ik0•rcJLM~r !, ~4!

where cJLM is the appropriate negative continuum wa
function andcb is the wave function of the bound electro

A. Wave functions

The wave function of a state characterized by the qu
tum numbersJ, L, andM is given by

cJLM~r !5S gk~r !VJLM~q,f!

i f k~r !VJL8M~q,f!
D , ~5!

VJLM5 (
ms561/2

^L 1
2M2ms ,msuL

1
2JM&

3YL,M2ms
~q,f!xms

, ~6!

where

k57~J1 1
2 !, L85L61 for J5L6 1

2 , ~7!

^•••u•••& is a Clebsch-Gordan coefficient,YLM a spherical
harmonic, andx denotes a Pauli spinor. For actual calcu
tions, the explicit expressions for theV ’s given by Greiner
@8# are very convenient.

For point nuclei of chargeZe, the radial solutions for
unbound states of energyE are given by the expressions

gk~r !5Ng~2pr !
s21

3 Re$eid~s1 ih!e2 iprF~s111 ih,2s11,2ipr !%,

~8!

f k~r !5Nf ~2pr !s21

3 Im$eid~s1 ih!e2 iprF~s111 ih,2s11,2ipr !%,

~9!

whereF(a,b,z)51F1(a,b;z) as usual denotes the conflue
hypergeometric function and the various parameters and
malization constants are given as

Ng52S pSE~E11!

p D 1/2eph/2
uG~s1 ih!u
G~2s11!

, ~10!

Nf52NgSESE21

E11D
1/2

,

ts

n-

-

r-

p5AE221, h5
aZE

p
, e2id5

2k1 ih/E

s1 ih
, ~11!

s5Ak22a2Z2, SE5
E

uEu
.

In these equations,a.1/137 is the fine-structure constan
and, as in the rest of this paper, the electron mass, the s
of light, and\ is set to unity.

The wave functions for bound motion around point nuc
may also be written in the form~5!, but in this case, the
radial functions read

gk~r !5Nbr
s21e2p0r

3H S ~n81s!

E
2k DF~2n8,2s11,2p0r !

2n8F~12n8,2s11,2p0r !J , ~12!

f k~r !52S 12E

11ED 1/2Nbr
s21e2p0r

3H S ~n81s!

E
2k DF~2n8,2s11,2p0r !

1n8F~12n8,2s11,2p0r !J , ~13!

where

Nb5
~2p0!

s11/2

G~2s11! S ~11E!G~2s1n811!

4n8! @~n81s!/E2k#~n81s!/ED 1/2,
~14!

E5F11
~aZ!2

~n2uku1s!2G
21/2

, p05A12E2, n85n2uku,

~15!

while s andk are as defined above andn denotes the main
quantum number. The expressions for the lowest shells
actually quite simple. For the ground state, for example,
have

gk~r !5N0r
s1s21e2aZr, f k~r !52S 12s1s

11s1s
D 1/2gk~r !,

~16!

whereN0 turns out to be

N05~2aZ!s1s11/2S 11s1s
2G~2s1s11! D

1/2

. ~17!

B. Matrix elements

In preparation for the numerical work, we now deriv
formulas for the matrix elements between bound states
free spherical waves. The bound state of energyEb is char-
acterized by the quantum numbersj , l , andm, while the
positron is represented by a negative-energy solution to
Dirac equation for the Coulomb potential, characterized
the energyE52E15Eb2k0 and the quantum numbersJ,
L, andM .
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404 55CARSTEN K. AGGER AND ALLAN H. SO”RENSEN
In the following calculation, let us choose the polarizati
vectorel to correspond to a photon of positive helicity, th
is, l51. Inserting Eq.~5! in the expression for the matri
element then yields@kb57( j1 1

2)#

M5 i E d3reik0•r@gkb
~r ! f k~r !V j lm

† s1VJL8M

2 f kb
~r !gk~r !V j l 8m

† s1VJLM#, ~18!

where

s15S 0 A2
0 0

D . ~19!

In order to do the integral,k0 is assumed to be in the direc
tion of thez axis, which allows us to writek05k0ez and use
the expansion

eik0z5 (
k50

`

i kA4p~2k11! j k~k0r !Yk0~q,f!, ~20!

where j k , as usual, denotes a spherical Bessel function.
serting this and exchanging the order of integration and s
mation enables us to express the matrix element as the
lowing sum of integrals:

M5 (
k50

`

i k11@ I 1
~k!2I 2

~k!#, ~21!

where

I 1
~k!5A4p~2k11!E

0

`

dr r 2 j k~k0r !

3gkb
~r ! f k~r !E dV V j lm

† s1VJL8MYk0 , ~22!

I 2
~k!5A4p~2k11!E

0

`

dr r 2 j k~k0r !

3 f kb
~r !gk~r !E dV V j l 8m

† s1VJLMYk0 . ~23!

The integrals~22! and ~23! separate into radial and angul
parts. We write

I i
~k!5I i ,q

k I i ,r
~k! , i51,2, ~24!

and include the square root in the angular integral.
Only a finite amount of the terms in Eq.~21! do, in fact,

contribute to the sum due to angular selection rules. As
example, consider the integralI 1. With the definition
-
-

ol-

n

Cjlm
JLM

55
A2~ j1m!~J2M ! j5 l1 1

2 , J5L1 1
2

A2~ j1m!~J1M11! j5 l1 1
2 , J5L2 1

2

2A2~ j2m11!~J2M ! j5 l2 1
2 , J5L1 1

2

2A2~ j2m11!~J1M11! j5 l2 1
2 , J5L2 1

2

the angular part may be written as

I 1,q
~k! 5S 4p~2k11!

~2l11!~2L11! D
1/2

3Cjlm
JLME dV Yl ,m21/2* YL8,M11/2Yk0 . ~26!

From the selection rules for the Clebsch-Gordan coefficie
it follows that this matrix element vanishes identically unle
M5m21, unlessu l2L8u<k< l1L8 and unlessl1L81k is
an even number.

For bounds states, the summation overk in Eq. ~21! may
be performed to yield the following result (J5L6 1

2!:

M5 i L811A2J11F I 1,r~L8!7
L21

2L11
I 2,r

~L21!6
L

2L11
I 2,r

~L11!G ,
m51 1

2 ,

M5 i LA2J1162
AL~L11!

2L11
@ I 2,r

~L11!1I 2,r
~L21!#,

m52 1
2 . ~27!

The result for boundp1/2 states follows by interchangingL
andL8, I 1 andI 2. For boundp3/2 states, the angular integra
read

I 1,q
~k! 5~21!m21/2~2k11!C~3/2!1m

JL8m21S 1 L8 k

2m1 1
2 m2 1

2 0D
3S 1 L8 k

0 0 0D , ~28!

I 2,q
~k! 5~21!m21/2~2k11!C~3/2!2m

JLm21 S 2 L k

2m1 1
2 m2 1

2 0D
3S 2 L k

0 0 0D , ~29!

which may be computed by use of the relations for thej
symbols given by Sobel’man@9# together with their symme-
try properties, see also Weissbluth@10#. The actual calcula-
tion would, of course, be the same as for thes state, only
now we have four possible values of the quantum num
m and some slightly more complicated 3j symbols.

The radial integrals~22!–~24! may be written as
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I 1,r
~k!5Nf ~2p!s21 ImH eid~s1 ih!E

0

`

dr r s11e2 ipr j k~k0r !

3gb~r !F~s111 ih,2s11,2ipr !J , ~30!

I 2,r
~k!5Ng~2p!s21 ReH eid~s1 ih!E

0

`

dr r s11e2 ipr j k~k0r !

3 f b~r !F~s111 ih,2s11,2ipr !J , ~31!

where indexb is used for the bound state; the parameters ~as
well as parametersp, h, and d) relates to the continuum
state. The integrals~30! always involve sums of integrals o
the same type, since all bound-state wave functions are o
form of a polynomial times a power times an exponent
Hence, we shall start focusing on the ground-state integ
since this will demonstrate all nontrivial aspects of the c
culations.

Inserting the ground-state wave function~16! in Eq. ~30!
above, we obtain

I 1,r
~k!5NfN0~2p!s21Im$eid~s1 ih!K~s,s1s ,k,aZ,p,k0!%,

~32!

I 2,r
~k!52NgN0S 12s1s

11s1s
D 1/2~2p!s21Re$eid~s1 ih!

3K~s,s1s ,k,aZ,p,k0!%, ~33!

with K defined as

K~s,sb ,k,p0 ,p,k0!5E
0

`

dr r s1sbe2~p01 ip !r j k~k0r !

3F~s111 ih,2s11,2ipr !. ~34!

Various approaches may be taken in order to evaluate
integral. The approach to be taken here is similar to
method of@11# and also used in@12# as well as in@13#. It
consists of expressing the spherical Bessel function of
integrand as a finite sum of exponentials, that is,

j k~z!5(
i50

k
~k1i !!

i! ~k2i !!
i k112i~2z!2i21

3@~21!k112ieiz1e2 iz#. ~35!

Insertion of this expression reduces Eq.~34! to

K~s,sb ,k,p0 ,p,k0!5(
i50

k
~k1i !!

i! ~k2i !!
i k112i~2k0!

~2i21!

3@~21!k112i Ĩ21 Ĩ1#, ~36!

with the definition

Ĩ65E
0

`

dr r s1sb212ie2[p01 i ~p6k0!] r

3F~s111 ih,2s11,2ipr !. ~37!
he
l.
ls,
-

is
e

e

We will first examine Ĩ1, since it turns out to be the
simplest. We introduce an integral representation of the c
fluent hypergeometric function,

F~a,b,z!5
G~b!

G~a!G~b2a!
E
0

1

du ua21~12u!b2a21ezu,

~38!

in Eq. ~37! whereby

Ĩ15
G~2s11!

G~s111 ih!G~s2 ih!
E
0

1

du us1 ih~12u!s2 ih21

3E
0

`

dr r s1sb212ie2~p01 i [p~122u!1k0] r !. ~39!

Upon elementary substitutions, ther integral yields aG func-
tion @14#

Ĩ15
G~s1sb2i !G~2s11!

G~s111 ih!G~s2 ih!
E
0

1

du us1 ih~12u!s2 ih21

3$p01 i @p~122u!1k0#%
i2s2sb. ~40!

If we now rewrite the factor in the integrand involvingp,
p0, andk0, making use of the simple algebraic fact

p01 i @p~122u!1k0#5@p01 i ~p1k0!#S 12
2pu

p1k02 ip0
D ,

~41!

the remaining integral overu may conveniently be expresse
in terms of the integral representation of the~nondegenerate!
hypergeometric function

F~a,b;c;z!52F1~a,b;c;z!

5
G~c!

G~a!G~c2a!
E
0

1

du ua21~12u!c2a21

3~12zu!2b. ~42!

Upon comparison, we obviously have

Ĩ15
G~s1sb2i !

@p01 i ~p1k0!#
s1sb2i

3FS s111 ih,s1sb2i;2s11;
2p

p1k02 ip0
D .

~43!

As for Ĩ2, we will first apply the Kummer transformation
F(a,b,z)5ezF(b2a,b,2z) whereby we may write

Ĩ25
G~s1sb2i !

@p02 i ~p1k0!#
s1sb2i

3FS s2 ih,s1sb2i;2s11;
2p

p1k01 ip0
D . ~44!
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406 55CARSTEN K. AGGER AND ALLAN H. SO”RENSEN
To summarize, the radial integrals for the ground state
energyE1s5s15A12(aZ)2, are given by Eqs.~32! and
~33!, with K given by Eqs.~36! and~43!–~44!; see also@15#.

Let us now turn to theL shell. For the 2p3/2 state of
energyE2p3/2

5s2/25A12(aZ/2)2 we get

I 1,r
~k!5NfN2p3/2

~2p!s21

3Im$eid~s1 ih!K~s,s2 ,k,aZ/2,p,k0!%, ~45!

I 2,r
~k!52S 12E2p3/2

E2p3/2
11D 1/2NgN2p3/2

~2p!s21

3Re$eid~s1 ih!K~s,s2 ,k,aZ/2,p,k0!%. ~46!

The integrals corresponding to the 2s and 2p1/2 states, which
have the same energyE2s5E2p1/2

5A(11s1)/2, are slightly
more complicated. By introduction of the quantities

K15K~s,s1 ,k,p0 ,p,k0!, K25K~s,s111,k,p0 ,p,k0!,
~47!

where nowp05A(12s1)/2, we get for the 2s state

I 1,r
~k!5NfN2s~2p!s21

3ImH eid~s1 ih!F2E2sK12
2p0

2E2s21
K2G J , ~48!

I 2,r
~k!52S 12E2s

E2s11D
1/2

NgN2s~2p!s21

3ReH eid~s1 ih!F ~2E2s12!K12
2p0

2E2s21
K2G J .

~49!

And, very similarly, for 2p1/2

I 1,r
~k!5NfN2p1/2

~2p!s21

3 ImH eid~s1 ih!F ~2E2p1/2
22!K12

2p0
2E2p1/2

11
K2G J ,

~50!

I 2,r
~k!52S 12E2p1/2

E2p1/2
11D 1/2NgN2p1/2

~2p!s21

3ReH eid~s1 ih!F2E2p1/2
K12

2p0
2E2p1/2

11
K2G J .

~51!

To summarize, the radial integrals for theL shell are given
by Eqs.~45!–~51! with K again given by Eq.~36! and Eqs.
~43! and ~44!.

C. Numerical results

The perturbation result for the total cross section for p
production with capture to theK shell may be obtained from
f

ir

Sauter’s Born-approximation result for the photoelectric e
fect @16# by performing appropriate substitutions. It reads

sB54plC
2a~aZ!5

p3

k0
5

3S 431
E1~E122!

E111 F12
1

2E1p
lnSE11p

E12pD G D ,
~52!

where E1 as usual denotes the positron energy,p is the
positron momentum, andk0 the photon momentum~that is,
the photon energy!. In the extreme high-energy limit, Eq.
~52! reduces to the so-called Sauter cross section

s05
4pa~aZ!5

k0
lC
2 , ~53!

which also applies for the photoelectric effect. The Born r
sults ~52! and ~53! are valid foraZ!1 and show a scaling
with Z5. Hence we expect a moderate variation with nucle
charge if we divide exact cross sections withZ5.

Figure 1 shows theK-shell cross section scaled withZ5 as
a function of photon energy for seven elements together w
the Born result~52!. The curves in Fig. 1 all show a peak a
low photon energies followed by a decrease which a
proaches the asymptotic 1/k0 dependence at high energies
cf. Eq. ~53!. The shapes for differentZ are rather similar, but
the peaking appears at lower energies for higher charges.

FIG. 1. Total cross section for pair production with the electro
bound in the 1s state as a function of photon energy for nuclea
charge numbersZ of 1 ~upper full-drawn curve!, 8 ~dotted!, 26
~short dashes!, 55 ~dotted-dashed!, 79 ~triple-dotted-dashed!, 82
~long dashes!, and 92~lower full-drawn curve!. Cross sections are
scaled withZ5, the unit on the ordinate is 10233 cm2, and the
photon energy is given in units ofmc2, the electron rest energy. The
uppermost curve~dotted-dashed! corresponds to the Born result
~52!.
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55 407PAIR CREATION WITH BOUND ELECTRON FOR . . .
absolute values for unit nuclear charge are close to the B
result ~52!, but asZ increases, values become lower cor
sponding to a slowerZ dependence of the cross section th
the perturbativeZ5 scaling.

It may be noted that near threshold, bound-free pair p
duction dominates over free-free pair production. For
case ofZ592, this holds true for nearly all of the first energ
unit beyond threshold. Right after curves cross, the bou
free cross section goes through its maximum while the cr
section for production of free pairs continues to increa
steeply.

The dependence ofK-shell cross sections on energy a
charge is further illustrated in Fig. 2, which shows the cro
sections of Fig. 1 in units of the Sauter cross section~53!.
Plotted in this way, each curve tends to a constant at h
energies so that, following Pratt@17# and Milstein and Stra-
khovenko@18#, we may write the high-energy cross secti
as

sK5s0f ~Z!, k0→`. ~54!

From the plot we see thatf (Z) is a decreasing function o
Z, and we further note that the high-energy limit is ess
tially reached at the maximum energy displayed~25 MeV!.
Aste et al. @4# have suggested a ‘‘purely heuristic’’ formul
for f (Z),

f ~Z!5S 121
aZ

4 D 2paZ

. ~55!

Even though our results are in good agreement with thos
@4#, this formula turns out to be somewhat below the ma
~5–10%!. The numerical high-energy results of Pratt@17#,
obtained in studies of the photoelectric effect, are in be
agreement with the present calculations. Another useful
proximation formula is the modified Hall formula@17#

s5s0~aZ!2je22aZ cos21aZ~124paZ/15!, ~56!

where j5s1215A12(aZ)221 (.2a2Z2/2); see also
@19#. The various results forf (Z) are compared in Table I
The formulas~55! and~56! are seen to be of nearly the sam
quality. The discrepancies between our high-energy lim

FIG. 2. Ratio of the exact cross sections displayed in Fig. 1
the Sauter cross section~53!. The charge numbers and symbo
used are the same as in Fig. 1.
rn
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e
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ss
e

s
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-
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k

r
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@21# and those given in@22# may well be caused by inaccu
racies in the original calculations of Pratt@17#; obviously, a
lot has happened in the realm of electronic computers s
1960, and an attempt to repeat the computation of the e
high-energy limit might not be superfluous, especially sin
the method used by Pratt did not permit him to perform
calculations in the low-Z limit. It may be noted, that for
energies beyond ca. 20 electron masses, there is a
agreement between the present results and those of a m
fied Born approximation, obtained by multiplying the Bo
result ~52! by the numerically obtainedf (Z).

Figure 3 illustrates the distribution of the cross secti
over angular momentaJ of the positron. With increasing
energy, the number of partial waves that contribute to
total cross section gets higher; on the figure we show
contributions for J<100, but for a positron of energy
25mc2 it is actually necessary to include the contributions
to, roughly, J5200 in order to get a sufficiently accura
result. A very conspicuous feature of the distribution of t
cross section on the angular-momentum quantum numbe
moderate and high energies is the sharp peak at lowJ, fol-

o

TABLE I. Comparison between the high-energy limits
s/s0 for theK shell extrapolated from the present work and tho
given by Pratt@17#, the high-energy approximation~55! obtained by
Aste et al. @4#, and the modified Hall formula~56!. The numbers
marked with an asterisk are extrapolated from the data given
Pratt, Ron, and Tseng@22#.

Z Present Pratt ~55! ~56!

92 0.196 0.203 0.182 0.175
82 0.216 0.223 0.197 0.201
79 0.222 0.228* 0.203 0.209
55 0.293 0.310* 0.271 0.305
26 0.518 0.532* 0.4875 0.529
8 0.798 0.793* 0.784 0.805
1 0.971 0.969 0.972

FIG. 3. Partial cross sections for pair production on a bare l
nucleus with the electron bound in the 1s state. The contributions
sJ from the individual partial waves of total angular momentu
J are shown in units of the total cross section. The full-draw his
gram corresponds to a positron energy of 25mc2, while the dashed
is for 5mc2. For comparison, the dotted histogram displays the
sult for Z51 at the higher energy.
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lowed by a decrease and a new increase producing a lo
maximum at higherJ. The peak at lowJ is the contribution
from the radial integralI 1 containing the large components
of the wave functions, whereas the local maximum at hig
J stems from the integralI 2 containing the small compo-
nents. In the low-Z limit the contribution fromI 2 tends to
vanish, and, indeed, the local maximum at highJ is missing
on the histogram displayed in the figure forZ51.

As proved, e.g., by Pratt@23#, to first order inaZ the
ns-shell cross sections obey a scaling law, so that

sns5
1

n3
sK . ~57!

Furthermore, Gavrila’s second-order Born approximation f
the 2s state yielded identically 1/8 of his second-orde
K-shell cross section@24#. Calculations by Pratt showed tha
in the high-energy limit, then23 scaling is very close to the
exact result not only at low charge numbers but in general
all values ofZ. The 2p states, on the other hand, have quit
insignificant cross sections at low target charges while
high target charges they will be of the same order of magn
tude as the 2s cross sections~though still smaller!. In the
Born approximation, that is, to lowest order inaZ, cross
sections forp states are expected to increase in proportion
Z7 as compared toZ5 for s states, cf.@24#. The result is that
the cross section for bound-free pair production with captu
to the L shell is approximately 12.5% of theK-shell cross
section for low target charges, where the Born approximati
is valid, and about 20% for high target charges. The prese
calculations show that this prediction, which was originall
based on Pratt’s high-energy calculations, is valid at prac
cally all energies away from threshold. Figures 4 and 5 sho
the contributions from the 2s states and the 2p1/2 states for
three heavy elements. For these high-Z targets contributions
from the 2p1/2 states are about half of those from the 2s
states. In Fig. 6, we show the lower 2p3/2 cross sections for
the same three elements. By comparing Figs. 5 and 6 to F
4, the increasing importance ofp states with increasingZ is
evident. We also mention that forZ51, where thep-state
contribution to the totalL-shell cross section is very small,
our results for the two 2p states are in good agreement with

FIG. 4. Cross sections for pair production with capture to th
2s1/2 shell as a function of photon energy in units ofmc2 for
Z592 ~full curve!, 82 ~dotted!, and 79~dashed!.
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those presented in@24#; for the 2p1/2 state, which at lowZ
actually makes the smallest contribution of the two, th
agreement is even very close.

Figure 7 displays the ratios of cross sections to t
K-shell cross section for the threeL states as well as for the
entire L shell for the three heavy targets selected in Fig
4–6. At energies beyond 5 units, all ratios are essentia
constant. The 2s curves all saturate at a level close to th
value 1/8. The 2p1/2 curves, on the other hand, show signifi
cantZ dependence, even faster than theZ7/Z55Z2 predic-
tion of the Born approximation, whereas the 2p3/2 ratios only
depend weakly onZ. Due to theZ dependence of the 2p1/2
results, also the ratio for the entireL shell shows someZ
dependence with asymptotic ratios ranging from 18% to 21
for the three selected heavy targets~again to be compared
with 12.5% in the low-Z limit !.

The high-energy limit for theL-shell cross sections is
most easily obtained by applying the high-energy values
the shell ratios and Eqs.~54! and ~53! for theK-shell cross
section with f (Z) taking values according to Table I. The
shell ratios obtained in our calculation are displayed in Tab
II and compared to results obtained by Pratt@23#.

Total cross sections for bound-free pair production b

e FIG. 5. Cross sections for pair production with capture to th
2p1/2 shell as a function of photon energy in units ofmc2 for
Z592 ~full curve!, 82 ~dotted!, and 79~dashed!.

FIG. 6. Cross sections for pair production with capture to th
2p3/2 shell as a function of photon energy in units ofmc2 for
Z592 ~full curve!, 82 ~dotted!, and 79~dashed!.



i-

n
t

-
v

he

d
s

-

ir

c
n
n

t

f
he

55 409PAIR CREATION WITH BOUND ELECTRON FOR . . .
high-energy photons where the electron ends up in theM or
any higher shell are given in@18#. According to @18#, the
contribution fromM and higher shells amounts to approx
mately 60% of theL-shell contribution for all charge num-
bers.

III. DIFFERENTIAL CROSS SECTIONS

In order to obtain differential cross sections, the co
tinuum state of an electron is represented by a scattering s
C6 corresponding to an incoming~outgoing! plane wave
plus outgoing~incoming! spherical waves. Relativistic Cou
lomb scattering states are only available in a partial-wa
expansion. This is given by Rose@25# and may be written

FIG. 7. Shell ratios. The ratios of cross sections for pair produ
tion with capture into the individualL subshells to the cross sectio
for capture into theK shell are shown as functions of positro
energy in units ofmc2 for three different elements;Z592 ~full
curve!, 82 ~dotted!, and 79~dashed!. The three close-lying curves a
the bottom of the figure display results for the 2p3/2 state, then
follow the three curves for the 2p1/2 state, the close packed group o
curves for the 2s state and, at the top of the figure, the sum of t
partial ratios.
-
ate

e

C654pS p

2EpD
1/2

(
JLM

i Le6 idk

3^L 1
2 ~M2 1

2s! 12suL 1
2JM&

3YL,M2s/2* ~ p̂!cJLM~r !, ~58!

wherecJLM are the partial waves listed in Sec. II A anddk is
the Coulomb phase shift, given by

dk5d1~L112s!
p

2
2 arg$G~s1 ih!%. ~59!

To describe an outgoing positron of momentump and helic-
ity s we make the substitutionsp→2p ands→2s in Eq.
~58! and select the incoming wave; that is, we consider t
state

Cp
254pS p

2EpD
1/2

(
JLM

i Le2 idk

3^L 1
2 ~M1 1

2s! 12suL 1
2JM&

3YL,M1s/2* ~2p̂!cJLM~r !. ~60!

The differential cross section then reads

ds

dV
5

apE1

2pk0
uM̃ u2, ~61!

whereE1 denotes the energy of the emitted positron an
Eb the bound-state energy. The matrix element is given a

M̃5E d3rcb
†~r !a•ele

ik0•rCp
2

54pS p

2E1p
D 1/2(

JLM
i Le2 idk

3^L 1
2 ~M1 1

2s! 12suL 1
2JM&

3YL,M1s/2* ~2p̂!MlJLM , ~62!

whereMlJLM are the partial-wave matrix elements intro
duced in Sec. II.

A. Numerical results

Figure 8 displays the differential cross section for pa
production with the produced electron bound in theK shell

-

TABLE II. High-energy limits of the ratios of cross sections for the variousL subshells to the cross
section for theK shell. The results marked with superscriptP are the high-energy results listed in@23#, except
for the caseZ51, where the high-energy limit of Gavrila’s Born approximation is used@24#. As in Table I,
the asterisk indicates that results are extrapolated from the data given in@22#.

Z 2s 2sP 2p1/2 2p1/2
P 2p3/2 2p3/2

P

92 0.129 0.130 0.0598 0.0576 0.0201 0.0212
82 0.128 0.128 0.0385 0.0374 0.0178 0.0179
79 0.127 0.127* 0.0340 0.0331* 0.0171 0.0165*
1 0.125 0.125 1.2431026 1.2531026 4.2431026 4.4431026
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410 55CARSTEN K. AGGER AND ALLAN H. SO”RENSEN
and the positron emitted with a total energy of 1.5mc2 for
five different target elements. At low target charges the d
ferential cross section vanishes in the forward direction. T
is in agreement with the prediction of the Born approxim
tion; see also@26#. At high charges, on the other hand, th
angular distributions show a maximum in the forward dire
tion. The transition from the low-Z to the high-Z behavior
takes place already at moderate charge numbers; forZ58,
the value for forward emission is distinct from zero and
Z526 the global maximum is at zero angle. It may be no
that at low Z, but not moderate and highZ, our angular
distribution is quite similar to that of theK-shell photoelec-
tric effect, which for any charge number has a local mi
mum in the forward direction@12#. On the other hand, fo

FIG. 9. Angular distribution of positrons at various energies
pair production withK-shell capture at targets withZ592 ~curves
peaking at zero angle! andZ51 ~curves peaking forE1u near 1!.
The abscissa is the product of positron emission energyE1 and
angle u, the ordinate is the differential cross section divided
E1Z

5; units aremc2 for E1 , radians foru, and 10233 cm2 per
steradian for the scaled differential cross section. The positron
ergies are 25mc2 ~full curve!, 15mc2 ~dotted!, 10mc2 ~dashed!, and
5mc2 ~chained!.

FIG. 8. Angular distribution of positrons at an energy
1.5mc2 for pair production withK-shell capture at targets of charg
numbers forZ51 ~full curve!, 8 ~dotted!, 26 ~dashed!, 55 ~chained!,
and 92~full, with a maximum in the forward direction!. The differ-
ential cross sections are scaled byZ5 and the ordinate is given in
units of 10236 cm2 per steradian.
-
is
-

-

t
d

-

single-quantum annihilation a maximum is encountered
the forward direction at highZ @27# as we find it for the
bound-free pair production.

Figure 9 displays the angular distributions at higher ene
gies for a heavy target element as well as for unit nucle
charge. With the abscissa chosen as the product of posit
energy and emission angle, the curves are all confined with
a few units corresponding to a scaling of characterist
angles with the inverse of the positron energyE1 . When
this result is combined with the asymptotic 1/E1 dependence
of the total cross section it is obvious, that the differentia
cross sections scale roughly withE1 . Accordingly, as ordi-
nate in Fig. 9 we have used differential cross section divide
by energy as well as byZ5. Plotted in this way, the shapes of
the curves for a given element are similar at all energies a
the variation in absolute values is moderate.

Figure 10 displays the differential cross section for pro
duction of the electron in the 2s and 2p1/2 states at a low
energy. The result for the 2s state, which is shown for
Z592, is close to one-eighth of the correspondingK-shell
result, which is also shown. The form of the angular distr
butions for the 2p1/2 state, shown for three different heavy
elements, is quite similar to that of thes state, though a little
broader, but theZ dependence is stronger. This similarity in
shapes between thes andp distributions does not appear at
low charge numbers. AtZ51, the result for the 2p1/2 state is
still at maximum in the forward direction, see also@24#,
while the result for thes state essentially vanishes here. I
may be noted, however, that thes results do not exactly
vanish in the forward direction for lowZ, and due to the
suppression of thep results at all angles for lowZ, the s
results still superseed thep results for forward emission.

Figure 11 shows the differential cross section for produc
tion of 2p1/2 electrons at a high energy for three high-Z tar-
gets as well as forZ51. The result for the 2s state is not
shown as it is again close to one-eighth of theK-shell result
for all Z.

r

n-

FIG. 10. Angular distribution of positrons at an energy o
1.5mc2 for pair production withL-shell capture. The upper full-
drawn curve is for production of 2s electrons on a target nucleus
with Z592, the close-lying dotted curve is 1/8 times the corre
spondingK-shell result, cf. Fig. 8. The three lower curves are fo
production of electrons in the 2p1/2 state around nuclei with charge
numbers numbers forZ592 ~full curve!, 82 ~dotted!, and 79
~dashed!. The unit on the ordinate is 10224 cm2 per steradian.
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55 411PAIR CREATION WITH BOUND ELECTRON FOR . . .
B. Polarization effects

If the incoming photon is polarized so that it is assume
to have, say, circular polarization corresponding to positiv
helicity, the created positrons will be more or less polarize
The degree of polarization is measured by the polarizatio
function defined as

P~q!5
ds~s51!2ds~s521!

ds~s51!1ds~s521!
. ~63!

WhenP51 ~respectively,21), the emitted positron is com-
pletely polarized in the direction of motion~respectively, in
the direction opposite the direction of motion!. Because of
the angular-momentum selection rules, positrons emitted
the forward and backward directions are always complete
polarized. Figure 12 displays the polarization function for
light and a heavy element. It may be noted, that for a hydr
gen target, the polarization becomes complete forq about 50

FIG. 11. Angular distribution of positrons at an energy o
10mc2 for pair production with capture to the 2p1/2 state. The dif-
ferential cross section is divided byZ7 and shown for nuclear
charges of Z592 ~lower full-drawn curve!, 82 ~dotted!, 79
~dashed!, and 1~upper full-drawn curve!. The unit on the ordinate is
10236 cm2 per steradian.

FIG. 12. Polarization. The full-drawn curve displays the polar
ization function~63! for production ofK electrons for unit nuclear
charge and positron emission at an energyE1 of 1.5mc2, the dotted
curve shows the same result forZ51 andE1510, the dashed is for
Z592 andE151.5, while the chained curve displays the polariza
tion function forZ592 andE1510.
d
e
.
n

in
ly
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degrees forE151.5, and for q about 10 degrees fo
E1510. This is in agreement with the Born approximatio
according to which the polarization transfer is complete at
angle given approximately by@28#

k0~k021!~12b cosq!52. ~64!

Indeed, this formula predicts that the complete polarizat
transfer should occur atq551.5 degrees forE151.5, and
for q59.3 degrees forE1510. This may be compared t
our values of 52.0 and 9.3 degrees, respectively. Hence
note that our predictions reproduce those of the Born
proximation in the low-Z limit. The better agreement at th
higher energy reflects the well-known fact that the accur
of the Born approximation increases with energy. Furth
more, we note that the absence of complete polariza
transfer at intermediate angles for highZ again demonstrate
the complete breakdown of the Born approximation at h
target charges.

As to theL shell, we mention that the polarization func
tion for the 2p1/2 state is completely different from thes
polarizations shown in Fig. 12 for all charge numbers. F
Z51 the complete polarization transfer observed at a defi
intermediate angle for theK shell is replaced by a complet
polarization reversal~complete spin flip!. And, again, the
result for high charge numbers is completely different fro
that pertaining to low values ofZ.

IV. REMARKS ON HEAVY ION IMPACT

The photo cross sections obtained in Sec. II may be
plied in a Weizsa¨cker-Williams construction to estimate th
contribution to bound-free pair production in distant heav
ion collisions. The relativistic projectile ion of atomic num
berZp is assumed to move on a rectiliniar path at a const
velocity v throughout the collision and the electromagne
field which it generates is ascribed to an equivalent bunch
photons which then interacts with the target nucleus thro
the previously determined photo cross sections, cf.@29#,
@30#. This leads to a cross section for ion impact

-

-

FIG. 13. Distant-collision contribution to the cross section f
pair production with capture to theK shell for ion impact withg
values up to 3400. The cross section has been divided with
square of the projectile charge number and the ordinate is give
units of 10227 cm2. The lower curve corresponds to a target char
number of 79, the central curve to 82 while the upper curve co
sponds toZ592.
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TABLE III. Distant-collision contribution to the cross section for pair production for bare gold i
incident on a bare uranium nucleus. The produced electron ends up in theK shell of the hydrogenlike
uranium system. Cross sections are given in barn. The first column identifies the impact kinetic energ
in GeV/amu, the next two give our results forbmin52 andbmin51, the fourth column compares to the resu
of Aste et al. @4#, and the last two compares to the Born approximation results of@32# and @33#. The Born
results for the total cross section are taken from@32# for the two lower energies and estimated for the high
by scaling the resultspert

total.14.3 lng231 given in @33# for impact of lead on lead withZp
2Z5f (Z), where

f (Z) is defined by Eq.~54! and listed in Table I. The Born results forb<2 are estimated from@32# and@33#
by numerical integration of data presented in a figure, respectively, by scaling a fitting formula
Zp
2Z5f (Z).

Energy Present;bmin52 Present;bmin51 Asteet al.; bmin51 spert
b<2 spert

total

10 5.58 13.1 - 8 15
100 39.8 54.8 54.4 13 50
20.000 165 182 185 22 167
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c. II.
s ion
~d!5E dv s~v!

dI ~d!~v!/d~v!

v
, ~65!

where superscript (d) signifies distant collisions ands(v) is
the cross section for photon impact. The photon inten
spectrum is given as@30#

dI ~d!

dv
5
2aZp

2

pv2 FxK0~x!K1~x!2
1

2
v2x2@K1

2~x!2K0
2~x!#G ,

x5
vbmin

gv
, ~66!

whereK0 andK1 denote modified Bessel functions of t
second kind and the quantityg is the usual Lorentz facto
g51/A12v2. The total spectrum~66! has been obtained b
integrating the spectrum pertaining to a given impact par
eter b over impact parameters beyond the minimum va
bmin . The latter quantity should be chosen such that bey
bmin , the interaction between the projectile ion and the ta
system, defined here to be the ion which ends up dre
with an electron, is perturbative. Furthermore, the very c
cept of a well-defined impact parameter to the target sys
demands thatb be in excess of the extension of the stru
system. As for the case of inner-shell ionization, this imp
thatbmin cannot be smaller than the radius of the conside
shell, cf. @29#. The contribution from close collisions has
be estimated by other means@31#. However, at high energie
the close-collision contribution is of minor importance,
the total cross section is dominated by the distant-collis
contribution.

As an illustration, we consider charged particle impact
three different heavy ions corresponding toZ values of 79,
82, and 92. For production ofK-shell electrons we choose
minimum impact parameter a length which essentially
i

a

y

-
e
d
t
ed
-
m

s
d

n

n

-

flects the radius of the correspondingK shells, that is, ne-
glecting minor variations between the three target ions,
choosebmin52. It should be noted, that this values is twi
that chosen by most other authors who select the Com
wavelength forbmin irrespectively of the actual width of th
electronical orbit. In Fig. 13 we show the distant-collisi
contribution to the pair production cross section as a func
of the impactg obtained by applying theK-shell photo cross
sections derived in Sec. II in the formulas~65! and ~66!
above~for v.50 we actually applied the Born result~52!
multiplied by the factorf (Z)).

In Table III we compare the results of the present work
those obtained in@4# also by the virtual photon method a
well as to other calculations, as reported in@32# and @33#,
which are perturbative in the projectile field but based
exact Coulomb waves for the target states. The questio
higher-order couplings to the projectile is not to be addres
here, see, e.g.,@33# for an investigation based on a coupl
channels approach or the two papers mentioned in@3# for an
examination based on a direct numerical solution of the tim
dependent one-electron Dirac equation. For the sake of
comparison, we include results obtained with our photo cr
sections forbmin51. We note that with the latter choice, ou
results essentially reproduce those of@4# and that, by chance
the results obtained by the choicebmin51 essentially equa
the sum of our results forbmin52 and an estimate of th
contribution for close collisions. Furthermore, the Born
sult for the distant collisions, obtained by taking the diffe
ence between the last two columns in Table III, is close
our result forbmin52 at all three energies.

It may be noted, that in view of the shell ratios display
in Fig. 7 ion-induced bound-free pair production is increas
by roughly 20% beyond the values displayed in Fig. 13 a
Table III when production ofL electrons is included. Inclu
sion of all shells beyond theL shell probably contributes a
additional 10%, see also the discussion at the end of Se
n
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